14,728 research outputs found

    Spontaneous Raman scattering for simultaneous measurements of in-cylinder species

    Get PDF
    A technique for multi-species mole fraction measurement in internal combustion engines is described. The technique is based on the spontaneous Raman scattering. It can simultaneously provide the mole fractions of several species of N-2, O-2, H2O, CO2 and fuel. Using the system, simultaneous measurement of air/fuel ratio and burnt residual gas are carried out during the mixture process in a Controlled Auto Ignition (CAI) combustion engine. The accuracy and consistency of the measured results were confirmed by the measured air fuel ratio using an exhaust gas analyzer and independently calculated mole fraction values. Measurement of species mole fractions during combustion process has also been demonstrated. It shows that the SRS can provide valuable data on this process in a CAI combustion engine

    Structure of CdTe/ZnTe superlattices

    Get PDF
    The structure of CdTe/ZnTe superlattices has been analyzed through θ/2θ x‐ray diffraction, photoluminescence, and in situ reflection high‐energy electron diffraction (RHEED) measurements. Samples are found to break away from Cd_(x)Zn_(1−x)Te buffer layers as a consequence of the 6% lattice mismatch in this system. However, defect densities in these superlattices are seen to drop dramatically away from the buffer layer interface, accounting for the intense photoluminescence and high‐average strain fields seen in each of our samples. Observed variations in residual strains suggest that growth conditions play a role in forming misfit defects. This could explain discrepancies with calculated values of critical thickness based on models which neglect growth conditions. Photoluminescence spectra reveal that layer‐to‐layer growth proceeded with single monolayer uniformity, suggesting highly reproducible growth. Our results give hope for relatively defect‐free Cd_(x)Zn_(1−x)Te/Cd_(y)Zn_(1−y)Te superlattices with the potential for applications to optoelectronics offered by intense visible light emitters

    Accommodation of lattice mismatch in Ge_(x)Si_(1−x)/Si superlattices

    Get PDF
    We present evidence that the critical thickness for the appearance of misfit defects in a given material and heteroepitaxial structure is not simply a function of lattice mismatch. We report substantial differences in the relaxation of mismatch stress in Ge_(0.5)Si_(0.5)/Si superlattices grown at different temperatures on (100) Si substrates. Samples have been analyzed by x‐ray diffraction, channeled Rutherford backscattering, and transmission electron microscopy. While a superlattice grown at 365 °C demonstrates a high degree of elastic strain, with a dislocation density <10^5 cm^(−2) , structures grown at higher temperatures show increasing numbers of structural defects, with densities reaching 2×10^(10) cm^(−2) at a growth temperature of 530 °C. Our results suggest that it is possible to freeze a lattice‐mismatched structure in a highly strained metastable state. Thus it is not surprising that experimentally observed critical thicknesses are rarely in agreement with those predicted by equilibrium theories

    Integrated specifications for abstract systems

    Get PDF
    Journal ArticleStructural specifications define an abstract object as a composition of other abstract objects. Behavioral specifications define an abstract object in terms of its associated operations. Integrated specifications are a combination of structural and behavioral specifications which are more powerful than either used alone. By providing four naming mechanisms, integrated specifications hide the details of how objects are represented and accessed on storage devices. The four naming mechanisms allow objects to be named in terms of the operations previously applied to them, the unique attributes they possess, the relationships they participate in, and the categories they belong to. Integrated specifications can specify the structure of more abstract systems than the relational database model, while also characterizing dynamic properties. Examples are given of integrated specifications for quide, symboltable and expression. These specifications are simple and guide, but do not constrain, the implementor in designing refinements. By exploiting abstract structure in specifications, common aspects of inter-object communication can be suppressed and only salient differences emphasized. Integrated specifications can make a significant contribution to the useability, reliability and efficiency of computer systems

    Cryostat Optimization Through Multiple Stage Thermal Shields

    Get PDF

    Strategic Sales Conversations As A Foundation For Effective Partnership Selling

    Get PDF
    This paper presents a new sales organization tool, strategic sales conversations, that can be used to enhance relationships with customers. Strategic sales conversations are an adaptation of strategic conversations in an inter- and intra- organizational context in which the selling firm is attempting to utilize open and honest communication to better understand the long-term needs of the buying organization.&nbsp; A process model of strategic sales conversations is developed and its implications are discussed.&nbsp

    Modeling of high speed friction stir spot welding using a lagrangian finite element approach

    Get PDF
    Friction stir spot welding (FSSW) has been shown to be capable of joining steels of very high strength, while also being very flexible in terms of controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding (RSW) if tool life is sufficiently high, and if machine spindle loads are sufficiently low so that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11-14 kN. Therefore, in the current work tool speeds of 3000 rpm and higher were employed, in order to generate heat more quickly and to reduce welding loads to acceptable levels. The FSSW process was modeled using a finite element approach with the Forge® software package. An updated Lagrangian scheme with explicit time integration was employed to model the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate [3]. The modeling approach can be described as two-dimensional, axisymmetric, but with an aspect of three dimensions in terms of thermal boundary conditions. Material flow was calculated from a velocity field which was two dimensional, but heat generated by friction was computed using a virtual rotational velocity component from the tool surface. An isotropic, viscoplastic Norton-Hoff law was used to model the evolution of material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures and the movement of the joint interface with reasonable accuracy for the welding of a dual phase 980 steel

    Intracerebral Hemorrhage and Ischemic Stroke of Different Etiologies Have Distinct Alternatively Spliced mRNA Profiles in the Blood: a Pilot RNA-seq Study.

    Get PDF
    Whole transcriptome studies have used 3'-biased expression microarrays to study genes regulated in the blood of stroke patients. However, alternatively spliced messenger RNA isoforms have not been investigated for ischemic stroke or intracerebral hemorrhage (ICH) in animals or humans. Alternative splicing is the mechanism whereby different combinations of exons of a single gene produce distinct mRNA and protein isoforms. Here, we used RNA sequencing (RNA-seq) to determine if alternative splicing differs for ICH and cardioembolic, large vessel and lacunar causes of ischemic stroke compared to controls. RNA libraries from 20 whole blood samples were sequenced to 200&nbsp;M 2 × 100&nbsp;bp reads using Illumina sequencing-by-synthesis technology. Differential alternative splicing was assessed using one-way analysis of variance (ANOVA), and differential exon usage was calculated. Four hundred twelve genes displayed differential alternative splicing among the groups (false discovery rate, FDR; p &lt; 0.05). They were involved in cellular immune response, cell death, and cell survival pathways. Distinct expression signatures based on usage of 308 exons (292 genes) differentiated the groups (p &lt; 0.0005; fold change &gt;|1.2|). This pilot study demonstrates that alternatively spliced genes from whole blood differ in ICH compared to ischemic stroke and differ between different ischemic stroke etiologies. These results require validation in a separate cohort
    corecore