
INTEGRATED SPECIFICATIONS

FOR

ABSTRACT SYSTEMS

by

John Miles Smith
Diane C.P. Smith

UUCS - 77 - 112

September 28, 1977

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277469?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

INTEGRATED SPECIFICATIONS

FOR

ABSTRACT SYSTEMS

by

John Miles Smith
Diane C.P. Smith

Structural specifications define an abstract object as a composition
of other abstract objects. Behavioral specifications define an abstract
object in terms of its associated operations. Integrated specifications
are a combination of structural and behavioral specifications which are
more powerful than either used alone. By providing four naming mecha
nisms, integrated specifications hide the details of how objects are
represented and accessed on storage devices. The four naming mechanisms
allow objects to be named in terms of the operations previously applied
to them, the unique attributes they possess, the relationships they par
ticipate in, and the categories they belong to. Integrated specifications
can specify the structure of more abstract systems than the relational
database model, while also characterizing dynamic properties. Examples
are given of integrated specifications for queue, symboltable and expres
sion. These specifications are simple and guide, but do not constrain,
the implementor in designing refinements. By exploiting abstract struc
ture in specifications, common aspects of inter-object communication
can be suppressed and only salient differences emphasized. Integrated
specifications can make a significant contribution to the useability,
reliability and efficiency of computer systems.

Keywords and phrases: Specification language, data model, database,
abstraction, data type, aggregation, generalization.

CR Categories: 3.65, 4.22, 4.33, 4.34.

This work was partially supported by the National Science Foundation
under Grant MCS75-09903

Authors' address: Computer Science Department, University of Utah,
Salt Lake City, Utah 84112

- 2 -

into simpler objects. Furthermore, the abstract structure of objects often

changes more slowly than their associated operations. As a result, struc

tural specifications are often more stable than behavioral specifications.

On the other hand, behavioral specifications are essential to verify

that abstract objects remain consistent with system invariants. It follows,

therefore, that integrated specifications are more complete characteriza

tions than either behavioral or structural specifications alone.

To extend the "aggregate" and "generic" types to support behavioral

specifications, two mechanisms must be provided:

i) a mechanism for defining abstract operations, and

ii) a mechanism for identifying the operands of these operations.

As the first mechanism, we will define abstract operations over the prim

itive operations "insert", "delete", and "modify" using standard control

structures such as conditional, iteration and recursion. We will use

a PASCAL-like syntax for expressing these control structures. The second

mechanism, for identifying operands, is one of the major contributions

of the paper. An example will be useful to motivate the necessary ideas.

Consider a generic class called "car" which has the attributes

"identification number", "manufacturer", and "color" and which has the

associated operations "purchase", "sell", and "lease". To apply one

of these operations to an individual car, it is necessary to uniquely

identify that individual. There are two basic ways in which this can

be done. One way appeals to the car's unique attributes, and the other

way appeals to operations previously applied to the car. Let's assume

that the attribute set {identification number, manufacturer} is sufficient

to identify individual cars. A car may then be named as "the Ford numbered

437" or "the Chevrolet numbered 623". We will call this associative

When users interact with a complex, real-world system they give

names to abstractions of the system which they can conceive as a whole.

Abstractions of the system state are conceived as abstract objects, while

abstractions of state transformations are conceived as abstract operations.

In a computer model of the system, it is important that these abstractions

be rigorously specified without introducing extraneous representational

or algorithmic detail. Such specifications can be given in two complemen

tary ways. A structural specification defines an abstract object as

a composition of other abstract objects. A behavioral specification

defines an abstract.object in terms of its associated abstract operations.

In [10, 11] we developed a methodology for the structural specification

of abstract objects. We pointed out that aggregation (naming relation

ships) and generalization (naming classes) are two fundamental mechanisms

for composing an abstract object from other abstract objects. Aggregation

and generalization have the effect of embedding abstract objects into

a framework of intersecting hierarchies. To define this framework we

introduced the data types "aggregate" and "generic". These data types

specify the abstract structure of objects without introducing extran

eous detail. A generic object is a class of individual aggregate objects.

Individuals may be included in, removed from, or changed in a generic

by the primitive operations "insert", "delete", and "modify".

In this paper we will develop behavioral specifications which can

exploit the previous structural ones. We will show how the two kinds of

specification may be dovetailed into a combination called integrated spe

cifications. Structural and behavioral specifications each make distinct

contributions to the overall characterization of abstract objects. Structural

specifications are essential to define the decomposition of complex objects

1. I n t r o d u c t i o n .

\

naming. On the other hand, using information about the order of previous

operations a car can be named as "the last car teased" or "the second car

bought". We will call this operati-ve naming.

Let's assume that an individual car only appears in the class "car"

after it has been bought. In principle then, any individual car can be

named as "the nth car bought" or "the mth before last car bought" , for

some numbers n and m. However, human beings only find it comfortable to

work with "small" values of n and m. Operative names are only convenient

when the individual car in question is "the first car bought", "the last

car bought" , "the car bought after N" or "the car bought before N" where

N is the known name of another car. When an individual cannot be named

operatively in this way, human beings usually switch to associative

naming.

We want our "aggregate" and "generic" types to support both associ-

tive and operative naming. This implies'that a capability for associa

tive search and a capability to retain the temporal order of relevant

operator invocations must be built in. These types already support asso

ciative naming via the declaration of an "attribute key". An attribute

key is a set of attributes whose values are sufficient to uniquely deter

mine individuals of an aggregate type. Individuals with duplicate key

values are automatically disallowed. Associative search is provided with

respect to the key attributes.

The "aggregate" and "generic" types do not presently support opera

tive naming. Operative naming can certainly be "implemented" over these

types by declaring additional attributes and using them to maintain tem

poral operation orderings. However, such implementations involve extran

eous details and are neither convenient for the user nor efficient for

-3-

the implementor. We will therefore extend the generic type to support

operative naming via the declaration of an "operation key". An opera

tion key is a set of operations whose prior invocations are sufficient

to uniquely determine individuals in a generic class. The temporal

ordering for invocations of these key operations is automatically

retained.

Interestingly, if a generic class has an operation key it is not

necessary for it to have an attribute key. For example, if we remove the

attribute "identification number" from the "car" generic, the remaining

attributes do not form a key - two distinct cars may have the same "manu

facturer" and "color". Nevertheless, individual cars can still be dis

tinguished via operative names. Operative naming thus provides a seman

tic basis for the handling of "identical" representations. Attribute

keys are therefore optional when operation keys are declared.

Previously, attribute keys were used for referencing between abstrac

tions in an aggregation/generalization hierarchy. This required copying

the attribute key from an individual into its relationships, and also

retaining (essentially) the same key at all levels of generalization.

Since attribute keys need not exist with the extended types, a new approach

to referencing is required. Our approach is to provide the user with two

'indirect naming primitives - one for aggregate components and the other for

generic images - and to render their implementation invisible to the user.

This means that attribute keys are not copied into relationships and that

attribute keys can vary with the level of generalization. The sole use of

attribute keys is for associative naming.

Once the aggregate and generic types have been extended in these ways,

they can be used to give integrated specifications for abstract systems.

- 4 -

I

-5-

These integrated specifications are at a higher level than the purely

behavioral specifications used in programming languages [5, 6, 9]. As a .

demonstration we will specify the abstractions "matrix" (which uses asso

ciative naming), "stack", and "queue" (which, in the absence of attribute

keys, require operative naming), "symboltable" (which requires both oper

ative and associative naming) and "expression" (which requires operative

naming). These five specifications are notable for their simplicity and

clarity. This is not merely the result of excluding implementation detail.

Rather, it results from the explicit support of aggregation and generali

zation abstractions together with suitable naming mechanisms. This allows

the common aspects of specifications to be suppressed and only salient

differences to be emphasized. Further, without constraining the implemen

tor, these specifications delineate the capabilities which must be pro

vided by lower levels of implementation.

In the database area, specification languages are called "database

models". Research into database models has been preoccupied with struc

tural specifications. This reflects the fact that in many database appli

cations the operations which transform the database are quite simple.

The importance of aggregation and associative naming is well recognized.

Integrated specifications can be thought of as a new database model which

captures both the structural and behavioral characteristics of abstract

systems. Since it can handle "identical representations", this model can

specify the structure of a greater variety of abstractions than the rela

tional model [1] . Moreover, its capability for behavioral specifications

is important for databases in applications, such as simulation and control,

where dynamic characteristics are critical.

The i d e a s o f s e v e r a l p e o p l e h a v e b e e n p a r t i c u l a r l y i n f l u e n t i a l i n th e

present work. Codd [2] was first to show that, when an appropriate nam-

inq mechanism for individuals is used, structure can be separated from

representation. His "normalized relations" were the first form of struc

tural specification which supported aggregation abstractions. McCarthy's

"abstract syntax" [8] is closely related to our structural specifications.

In essence, our structural specifications extend his composition operations

of "cartesian product" and "disjoint union" by incorporating suitable nam

ing mechanisms for individuals. Liskov [7] has shown how behavioral spec

ifications can be exploited in the design of a programming language. Gut-

tag [4] has shown how behavioral specifications can be set on an elegant

algebraic basis. :

Section 2 discusses operative naming and introduces the extended

aggregate and generic types. Section 3 considers the specification and

maintenance of aggregation hierarchies with the new types. Section 4

covers similar topics for generalization hierarchies. Section 5 demon

strates the advantages of integrated specifications for a variety of data

abstractions drawn from the programming language area. Section 6 is a

conclusion.

- 7 -

An abstract object type has two external manifestations: i) its

set of attributes and ii) its set of operations. A user may need to

employ either, or both, of these manifestations to identify an individual

of the type. In a "static" environment, such as those used in data processing

applications, it is usually the individual's attributes that are important -

assoc'lat'Lve naming is therefore common. In a "dynamic" environment, such

as those used for simulation and control applications, it is often the

history of operations applied to the individuals that is important -

operative naming is then useful.

The "generic" type [11] already supports associative naming. For

example, suppose we declare:

, var G: generic of A;

where A is an aggregate type with attribute key k. An insertion into G

will not be allowed if it would result in two individuals with the same

key values. Furthermore, an individual in G may be named by writing

G[k-list], where "k-list" is a list of the individual's key values. For

example, assuming the key attributes of the generic "car" are {ident

ification number, manufacturer}, an individual car can be named as

" c a r [4 37, Ford]".

Operative naming exploits the order in which operations were prev

iously applied to name the individuals of a generic class. As described

in section 1, human beings only seem to be comfortable in using operation

K
orders on a "local" basis. In the simplest case, an individual may be

named as the first or last individual to which an operation was applied.

For example, we may refer to "the first car sold" or "the last car bought".

More generally, if N is an individual name, we may talk about the indiv

idual operated on before or after N. For example, we may refer to "the

car sold before N" or "the car bought after N " .

2. O p e r a t i v e Naming

- 8-

Operative naming may be combined with associative naming so that

both operations and attributes serve to identify the desired individual.

For example, we may talk about "the last blue car sold" or "the Ford bought

after N " . More complex forms of combined naming, which mix multiple opera

tions, are also possible. For example, we may refer to "the first blue

car sold after the last Ford was bought".

Operations such as "buy", "sell", or "lease" are ultimately expressed

in terms of the three primitive operations associated with the generic

type - namely, "insert", "delete", and "modify". In some cases, these

operations map directly to single primitive operations - for example,

"buy" may correspond to a single "insert" operation, and "lease" may

correspond to a single "modify" operation. In other cases, they will

map to several primitive operations - for example, "sell" may correspond

to a "modify" operation on "car" together with an "insert" operation on

"sales". .

We will say that an operation is associated with a generic G if

that operation is ultimately expressed in terms of primitive operations

on G alone. We will say that an operation is basic to a generic G, if

that operation is associated with G and is expressed as a single prim

itive operation. Since basic operations are necessarily unambiguous with

respect to the individual involved, only these operations will be exploited

for operative naming. Furthermore, we will assume that an individual is of

no further interest once it has been deleted. There is therefore no reason

to name an individual as (effectively) "the last individual deleted".

We have decided to provide the following capabilities for operative

naming. If "op" is a basic insert or modify operation for a generic G, an

individual in G may be named by:

G [first/last oped]

here the slash "/" indicates an alternative and "oped" is the past participle

form of "op". Further, if N is an individual name, either associative

or operative, then a new name may be formed by writing:

succ/pred oped N.

In this way, we can name the successor (predecessor) "oped" before (after)

the individual N.

Some examples of operative names for the generic "car" are:

car[last bought]
car[first leased]
succ bought car[last leased]
pred leased c a r [437, Ford]

In the third example, notice that two different operations are included

in one operative name. The last example may be read as "the car leased

before the Ford with identification number 437". This name presumes

that the "Ford with identification number 437" was itself leased.

We are assuming that these naming primitives are embedded in some

high-level programming language which provides appropriate control structures.

It is then possible to implement more powerful operative and combined

naming facilities using the primitives provided. It could be argued that

the primitives themselves should be more powerful - for example, by providing

the capability to directly state:

G[first/last {but n} {where property} oped]

where the curly brackets indicate optional phrases. This construction

has two nested iterations built-in - one to check for satisfaction of

a property (color = blue) and the other to find the nth such individual.

Using our primitives these iterations would have to be expressed explicitly.

However, the line must ultimately be drawn somewhere and it seems reasonable

to begin with simple primitives.

- 9 -

- 1 0 -

Let's consider the application of basic operations on a given generic

more carefully. A given individual can be inserted, and then deleted,

many times. However, for each individual we will only be interested in

the last time a given basic insert operation was applied to it, without

subsequent deletion. Similarly, an individual can be modified several

times, possibly with intervening insertions and deletions. However, for

each individual we will again only be interested in the last time a given

basic modify operation was applied to it, without subsequent deletion.

As stated before, we will not be interested in deletion operations for

operative naming.

We can now outline the implementation requirements for operative

naming over a generic G. For each basic insert or modify operation op,

a separate total ordering over (some of) the individuals of G must be

maintained. This ordering specifies the sequence in which op was last

applied to each individual. For example, assume op was applied to three

individuals in G in the sequence first g^, then g^, and finally g^. At

this time G[last oped] names g^. If op is applied to g^ again, then the

sequence becomes first g^, then g^, and finally g^. Now G[last oped]

names g^- If op is applied concurrently to two different individuals

then an arbitrary sequence must be assigned. Whenever an individual is

deleted, it must be removed from all orderings. ;

It is clear that there is a substantial overhead for maintaining

operative names - as indeed there is for maintaining associative names. ’ •

In some applications there may be no need for one of these naming mechanisms.

Under such circumstances, the unnecessary mechanism should be "turned off"

at the implementation level.* It is important to provide both naming

* The type declaration provides the "switch". If no attribute key is de
clared, associative naming need not be supported. If no operation key is
declared, operative naming need not be supported.

- 1 1 -

mechanisms with the generic type because they support distinct user

requirements. The user can express himself simply and naturally, and the

implementor can optimize lower levels in accordance with intended usage.

So far we have discussed general issues concerned with operative

naming. Now we will consider some specific examples and introduce several

syntactic constructs. Let's assume we want to define a generic object

call "employee". The attributes of "employee" which interest us are "ID-number",

"name", "address", and "salary". From these attributes, "ID-number" alone

forms a key. We will also assume that the only operations on "employee"

of interest are "HIRE", "TERMINATE", and "PROMOTE".* We can declare the struc

tural characteristics of "employee" ass

var employee: generic
of
aggregate [ID#]

ID#: ID-number;
N : name;
A: address;
S: salary

end

The square brackets following aggregate include the key. We will now

discuss the primitive operations on generics, with the objective of ultimately

defining HIRE, TERMINATE, and PROMOTE.

To construct an individual of a given generic G, we will use the

following syntax:

G<component list>.

The angle brackets indicate a construction operation and enclose the

components involved. For example, to construct an individual employee

we may write:

employee<E23, Brown, NYC, 10>.

* It is assumed that a query language is available for information retrie
val and so no explicit retrieval operations are specified. We will only
specify retrieval operations for an abstract object when certain kinds of
restricted access are a characteristic of that object - e.g. TOP will be
specified for stack.

- 1 2 -

To insert an individual I into a generic G, we will use the syntax:

G <f= I.

G and I must be compatible types. For example, to insert the previous

individual into "employee" we write:

employee <== employee<E23, Brown, NYC, 10>.

As we often want to construct an individual and immediately insert it

into its generic, we will shorten the above statement by not repeating

"employee":

employee <== <E23, Brown, NYC, 10>.

The type for the constructor is given by the generic on the left.

We can now define HIRE. Essentially HIRE constructs an individual

and inserts it into "employee":

HIRE(id, n, a, s) : employee <= <id, n, a, s>.

HIRE is therefore a basic insert operation of employee. We will now hire

three employees:

HIRE(E23, Brown, NYC, 10);
HIRE (E16, Smith, LA, 12);
HIRE(E4, Brown, SF, 10).

At this time, we can visualize "employee" as the following table:

employee:

ID-number name address salary

E23 Brown NYC 10
E16 Smith LA 12
E4 Brown SF 10

The individual with ID-number "E23" can be named associatively as employee[E23]

and named operatively as employee[first hired].

To delete an individual I from a generic G we use the syntax:

G I.

For example, we can delete the individual "E23" by writing:

employee ==> employee [E23] .

TERMINATE(e): employee => e.

In this definition "e" is the name of an employee individual. For example,

we can terminate employee "E23" by writing:

TERMINATE(employee[E2 3])

or: TERMINATE(employee[first hired]).

After "E23" is terminated, employee[first hired] names "E16".

To modify an individual I so that its c-component becomes v, we use

the syntax:
iyc ^ v. •

The symbol "V" forms a "component name" from individual I and selector c.*

For example, to modify the address of "E4" to "SLC" we write:

employee [E4]Va <=> SLC. ' ;

We will assume that an enployee's promotion affects only his salary.

PROMOTE can then be defined as:

: ' PROMOTE(e, s) : eVS « > s. ’ v r

In this definition, e is a name (either associative or operative) for an

employee and s is a salary. L e t’s promote employee "E16" to a salary of

$14K: ...
PROMOTE (employee [E16] , 14).

At this time "E16" can be named as either employee[first promoted] or

as employee[last promoted]. If "E16" is terminated, both these names

become undefined, and "E4" acquires the names employee[first hired] and

also employee[last hired]. It is important to keep in mind that an indi

vidual1 s associative name can only change when its key values are modified.

However, an individual's operative names may change whenever an operation

is applied to an individual in the same generic.

We will now consider the "employee" example again - with the differ

* The reason for not using the familiar notation for forming conponent
names will become apparent in the next section.

- 1 3 -

We can now d e f i n e TERMINATE a s :

- 1 4 -

ence that the only attributes of interest are "name" and "salary". Since

individual employees cannot be distinguished by these two attributes alone,

the generic "employee" will have no attribute key. The integrated speci

fication of "employee" is now:

var employee: generic

aggregate
N: name?
S: salary

end

operations [HIRE, PROMOTE]

HIRE (n, s) : employee <£= <n , s>

TERMINATE(e): employee => e

PROMOTE (e, s) : eVS <=> s

end

As there is no attribute key, the square brackets following aggregate are

omitted. If an erroneous key (e.g. [N, S]) were declared, the generic would

violate the requirements for being "well-defined" [10,11], The square

brackets following operations contain the names of the key operations.

These are basic insert or modify operations that may be used for naming.

Let's hire the same three individuals as before:

HIRE(Brown, 10), '
HIRE(Smith, 12),
HIRE(Brown, 10).

At this time, "employee" can be visualized as the following table:

employee :

name salary

Brown 10
Smith 12
Brown 10

In this table the representations of two distinct individuals have

identical attribute values. These individuals cannot be distinguished

by any kind of associative naming. Nevertheless, the individuals can be

distinguished by operative naming - one is employee[first hired] and the

- 1 5 -

other is employee[last hired]. This distinguishability is of critical

importance. It will allow one individual to be terminated or promoted

without affecting the other. It will be exploited in the next section

to allow one individual to participate in different relationships to the

other. In short, operative naming provides a semantic basis for the treat

ment of identical representations.*

When a generic has a declared attribute key, duplicate representations

o f t h e same i n d i v id u a l will be detected and disallowed. However, when a

generic has no declared attribute key, this is no longer possible. Such

generics should only be used in an environment where the responsibility

for preventing duplicate representations is assumed prior to insertion.

Such environments seem to occur quite frequently in practice.

We will now consider a third, and final, version of the "employee"

example. We will assume that there is no interest in any attributes of

"employee" at all. This situation is not unrealistic. It will occur

whenever it is the relationships in which an individual participates, and

not the details of the individual itself, that are of interest.+ Under

these circumstances, we would define "employee" as:

var employee: generic

K'i.
aggregate

:. end ,

. ■ operations [HIRE, PROMOTE] . •

HIRE: employee <= < >

TERMINATE (e) : employee => e

PROMOTE (e): _

* end

*Since Codd's relational algebra [3] only supports an associative type
of naming, all identical representations but one are deleted whenever
they are generated by relational operations (e.g. PROJECT or UNION).
Semantically, this is not always appropriate.

+Interestingly, this situation occurs in the "symboltable" example of
Section 5. .

- 1 6 -

The operation HIRE is implemented by inserting a null aggregate, while

PROMOTE is implemented by a "no-op"(_) . To hire the same three individuals

as before we write:

HIRE;
: ' ' HIRE;

HIRE.

To promote the first employee hired, we write: ‘

PROMOTE(employee [first hired])

and to terminate the second employee hired, we write:

TERMINATE(succ hired employee [first hired]).

At this time, employee[first promoted] refers to the first employee hired.

In essence the last definition of "employee" is providing just a naming

capability. This capability is useful when employee relationships are

being created and manipulated.

There is a fundamental duality between attributes (nouns) and operations

(verbs). For example, one can think of the attribute "name" as the operation

"give name to", and the operation "promote" as the the attribute "promotion".

One can therefore design a specification language for data types based

solely on "attributes" or based solely on "operations". However, within

a given context, people find it natural to use the noun form for some

concepts and the verb form for others. It is therefore somewhat artificial

to insist that all concepts be treated in the noun form or that all concepts

be treated in the verb form. Our approach allows the most natural form

for a concept to be chosen in each case.

- 1 7 -

Aggregation is used here to mean an abstraction in which a relation

ship between generic objects (say 0 ,...,0) is regarded as a higher-level

generic object (say O) . The objects (X are the components of O, and the

names of these objects are the attributes of 0. A component 0^ may be

either primitive or non-primitive. A non-primitive component is formed

by another aggregation abstraction. Primitive objects are self-naming,

while non-primitive objects may be named assoaiatively and/or operatively.

Aggregation gives rise to a hierarchy of generic objects.

As an example, consider the relationship in which "an instructor

is scheduled to teach a course during a particular semester". This rela

tionship may be aggregated as the generic object "class". The components

of a class are its instructor, its semester of offering and the course

taught. We will assume "semester" is a primitive object and may be named

directly as "Fall77" or "Wint78". We will take "instructor" and "course"

as non-primitive objects and so they must be named either associatively

or operatively. The attributes of job will therefore be "instructor name",

"course name", and "semester" . To define the structure of "class" we will

use the syntax:

var class: generic
of ■ ■ • ■ . . . ,

aggregate [C, S]
I : instructor name;
C : course name;
S: semester

end

By declaring [C, s] as the attribute key, we are assuming a class can

be uniquely identified by its course and semester components.

Let's consider the construction and manipulation of individuals belonging

to a non-primitive generic. When an individual is constructed, its components

3. A g g r e g a t i o n H i e r a r c h i e s

- 1 8 -

are named explicitly - these names may be associative or operative. The

component names become the attributes of the individual. Even though

the component names may change over time, the components of an individual

remain the same, unless they are explicitly modified. The attributes of

the individual change in accordance with the component names.

It is often necessary to manipulate the components of some individual.

For this purpose we will provide an indirect naming mechanism for components.

If "I" is an individual and "c" is a selector, then "iVc" names the c-

component of I.* It is important to realize that "iVc" names the component

itself and not the attribute. At any point in time, the Vatue of the

attribute "I.c" is a name for the component "IVc". Since a component

may have many names (associative, operative and now indirect), it is useful

to know when two names apply to the same individual. We will therefore

provide a predicate for name equivalence. For individual names n and

m, "m = n" is true provided n and m name the same individual.

Indirect naming allows us to access a component without knowing any

of its "direct" names. The direct names of components become of interest

when attributes of an individual are copied into local program variables

or used for output. At that time a decision must be made as to which

form of direct name to transfer. We will assume that only the associative

form need be transfered. From the examples we have seen, this assumption

is realistic. Attributes will therefore be copied in the form of a standardized

associative name. Attributes names (e.g. I.c) will be legal only in the

scope of an assignment or output statement. At all other times indirect

names (e.g. iVc) must be used.

*The symbol "V" is chosen to suggest an arrow pointing down the aggrega
tion hierarchy. It may be read as "A-arrow".

- 1 9 -

With the preceding discussion as background, we wil-1 now give a specific

example of the definition, construction and manipulation of an aggregation

hierarchy. Figure 1 is a schematic form of an aggregation hierarchy involving

the abstract objects "class", "instructor", and "course", together with

their associated operations. Instructors can be hired, promoted and terminated.

Promotion involves a modification of rank. Courses can be created and

dropped. Classes can be scheduled, changed and cancelled. However, the

only allowed change is to assign a different (or no) instructor to a class.

A specification for this aggregation hierarchy is given in Figure 2.

SCHEDULE class:
CHANGE
CANCEL

HIRE instructor: semester course: CREATE
PROMOTE ------------
TERMINATE

/ R
ID-number address rank course credit

number hours

Figure 1 : An aggregation hierarchy for "class".

The specifications for "instructor" and "course" are very similar

to the specifications of "employee" given previously. A new feature is

statements enclosed by curly brackets in the definitions of TERMINATE

and DROP. This feature will be discussed later. Before we can construct

and manipulate classes, some instructors must be hired and some courses

created. Let's do this now:

HIRE (16, 3rd Ave, assnt);
H I R E (121, 4th Ave., full);
CREATE(MA434, 3);
CREATE(CS231, 4) ;
CREATE(EE316, 2).

var class: generic
of
aggregate [C, S]

I : instructor name;

C : course name;
S: semester

end

operations [SCHEDULE, CHANGE]

SCHEDULE (i, c, s) : class ^=<1, c, s>

CHANGE (cl, i) : clVl <=> i s

CANCEL(cl): class => cl

end

var instructor: generic
o£
aggregate [ID]

ID: ID-number;
A: address;
R: rank

end

operations [HIRE, PROMOTE]

HIRE (id, a, r) : instructor <s= <id, a, r>

PROMOTE (i, r) : iVR <=> r

TERMINATE(i): instructor => i; {CHANGE(class)}

end

var course: generic
of
aggregate [CN]

C N : course-number;
H: credit-hours

end

operations [CREATE]

CREATE(cn, h) : course <= <cn, h>

D R O P (c): course => c; {CANCEL(class)}

F ig u re 2 : A s p e c if ic a t io n fo r the aggregation h ie ra rch y o f F ig u re

- 2 1 -

The operation SCHEDULE, which requires the construction and insertion

of an individual class, can be specified as:

SCHEDULE(i, c, s) : class <= <i, c, s>

where i, c and s are an "instructor" name, a "course" name and a semester

respectively. The effect of scheduling a class "cl" is that: clVl = i,

clVC = c and clVS = s. Let's schedule the following two classes:

SCHEDULE(instructor[16], course[last created], FALL78);
SCHEDULE(instructor[last hired], course[CS231], SPRG78).

In these operations, both associative and operative names have been em

ployed for components. Under some circumstances, it may even be useful

to employ i n d i r e c t names for components. As an example, we will schedule

a third class:

SCHEDULE(class[last scheduled]VI, course[MA434], WINT78).

In this operation the "instructor" component has been named indirectly

via a class previously scheduled.

Now that we have some classes scheduled, let's consider the forma

tion of names for individual classes. Operative names are formed in the

usual way (e.g. class[first scheduled]). To form an associative name for

a class, values must be given for the C and S attributes. The value of

the S attribute is a semester (e.g. SPRG78). The value of the C attribute

is the name of a course. This latter name may itself be either associa

tive (e.g. course[CS231]) or operative (e.g. course[last created]). An

associative name for a class may thus appear as:

class [course[CS231], SPRG78]

or: class[course[last created], SPRG78]

These associative names can be simplified, without ambiguity, by

omitting the generic name "course". Assuming key attributes are listed

-22-

in left to right order, this generic name is uniquely determined by the

key declaration for "class". The above names would then appear as: .

class[[CS231], SPRG78]

and: class[[last created], SPRG78].

Subsequently, we will always omit the generic name from the individual

associative and operative names of key components. We will say that a

name is f u l l y a s s o c i a t i v e , if associative naming is used for key components

at all levels. For example, the name "class[[CS231], SPRG78]" is fully

associative, while the name "class[[last created], SPRG78]" is not fully

associative.

Fully associative names are the standard form used in copying attributes

for external usage or output. For example, to output the "instructor"

attribute of the last class scheduled, we write:

output class[last scheduled].1

The fully associative form of this attribute is "instructor[121]" and so

this form is output. If an attribute has no fully associative form then

copying is illegal. A generic object can be visualized in terms of fully

associative names at any point in time. At the present time "class" can

be visualized as the table below:

class:

instructor course semester
name name

16 EE316 FALL78
121 CS231 SPRG78
121 MA434 WINT78

It should be kept in mind that the fully associative name of an individual,

like all its names, may change due to subsequent operations. It is always

-23-

To determine whether the last class scheduled was class[[CS231], SPRG78]

we can write:

class[last scheduled] = class [[CS231], SPRG78].

Name equivalence is particularly useful in testing the properties of compo

nents. For example, to determine whether instructor "16" is scheduled to

teach EE316 in FALL78, we can write:

class[[EE316], FALL78]VI = instructor[16].

Similarly, we can determine whether the first class scheduled is being

offered in FALL78:

class[first scheduled]VS = FALL78.

Notice that the "V" symbol and not the symbol are used to form component

names.

The operation CHANGE can be defined a s :

CHANGE(cl, i) : clVI «=> i

where "cl" and "i" are names for a class and an instructor respectively.

The effect of this operation is that clVI = i. To assign instructor "16"

to the class of MA434 given in WINT78, we write:

CHANGE(class[[MA434], WINT78], instructor[16]).

To simply release an instructor from an assignment to the previous class,

without assigning a new instructor, we can write:

CHANGE(class[[MA434], WINT78], -).

The symbol stands for the "null" name.

The operation CANCEL can be defined a s :

CANCEL(cl): class => cl

*It is easy to maintain this name "currency" at the implementation level.
Non-primitive component names are never actually stored in the individual1s
internal representation. Instead, pointers are maintained to the individual's
components and names are dynamically interpreted before output.

the c u r r e n t name th a t i s o u tp u t.*

-24-

where "cl" is the name of a class. This operation simply deletes the indi

vidual "cl" from class. All associative and indirect names equivalent to

"cl" will no longer name an individual and will thus become undefined. All

operative names equivalent to "cl" will either be transferred to other

individuals or also become undefined. To cancel the class previously

changed, we write:

CANCEL(class [last changed]).

So far in this section, we have seen how aggregation hierarchies may

be defined and manipulated. Now we will consider the aggregation invari

ants that must be maintained. There are two aggregation invariants for a

generic G:

i) if G has an attribute key, then no two individuals in G have the

same key components, and

ii) for each individual in G, all its non-null attributes are d e f i n e d

names.

The first invariant must be maintained during insert and modify oper

ations. In particular, "null" names must not be allowed in key components.

The second invariant can be maintained under insert and modify operations

by disallowing undefined names. The most interesting case is the mainte

nance of the second invariant under delete operations.

When an individual is deleted, attributes of higher-level individuals

which name this individual will become undefined. There are two methods

for handling this situation. One method is to d e l e t e all these higher-

level individuals, and the other is to m odify them so that the offending

attribute becomes null. The more appropriate method depends on the seman

tics of the higher-level individual. If the undefined attribute is

"essential" to the continued existence of the higher-level individual,

-25-

then that individual should be deleted. For example, if the course offered

in a class is dropped, then that class is normally deemed to be cancelled.

On the other hand, if the undefined attribute is "inessential", then the

appropriate action is to modify the higher-level individual. For example,

if one terminates an instructor who teaches the class, this does not

necessarily imply cancellation of the class. In any case, null names can

not be used for key attributes.

In specifying a generic object, we must define which of these two

side-effects on higher-level objects are triggered by a delete operation.

This is done by enclosing in curly brackets a modify or delete operation

for each higher-level generic. In Figure 2, we have decided that terminating

an instructor will only cause his classes to be modified by the CHANGE

operation. It is not necessary to define parameters for this operation -

all individuals with an undefined attribute are to be modified using the

"null" name. We have also decided that dropping a course will cause all

its classes to be deleted with the CANCEL operation.

The triggered invocation of defined operations will affect operative

names on that operation in just the same way as direct invocation. For

example, if we terminate an instructor who is scheduled to teach some

classes, then immediately afterwards "class[last changed]" will name one

of these classes. in some cases there may be no defined operation which

is appropriate to use for the triggered side-effect. A primitive delete

or modify must then be specified.

-26-

of generic objects (say, {c> , ..., O }) is regarded as a higher-level
1 n

generic object (say, O) . The objects are the c a t e g o r i e s of 0. The

class {o,, ..., O } is partitioned into b lo c k s * , so that each block contains
1 n

disjoint categories. Each category o may be either p r im it i v e or non

p r i m i t i v e . A non-primitive category is formed by another generalization

abstraction. Generalization gives rise to a hierarchy of generic objects.

As an example, consider the class which contains the generic objects

"wind-propelled vehicle", "motorized vehicle", "man-powered vehicle",

"land vehicle" and "air vehicle". Each of these objects is a particular

category of "vehicle", and so the whole class can be generalized to "vehicle".

There are two blocks in the class:

i) {wind-propelled vehicle, motorized vehicle, man-powered vehicle}

ii) {land vehicle, air vehicle}.

The first block contains alternative "propulsion" categories and the second

contains alternative "medium" categories.

A structural definition of "vehicle" is shown in Figure 3. The only

change to the syntax of [11] is that the category type (e.g. propulsion

category), rather than the category selector (e.g. P C) , is repeated in

a block declaration. This change emphasizes that the category type is

completely determined by the block. Each category must also be defined

as a generic object in its own right. The attributes PC and MC are called

c a te g o ry attributes.

A single real-world individual may have representations in several

categories. For example, a car will appear as a "vehicle" individual,

4. G e n e ra liza t io n H ie ra rch ie s

G e n e ra liza t io n i s used here to mean an a b s tra c t io n in which a c la s s

*In [11] blocks were called clusters.

-27-

var vehicle:
generic

propulsion category =
(wind-propelled vehicle, motorized vehicle, man-powered vehicle);

medium category =
(land vehicle, air vehicle)

of
aggregate [ID]

ID: ident. number;
A: appraised value;

PC: propulsion category;
MC: medium category

end

Figure 3: A definition of "vehicle".

a "motorized vehicle" individual and also as a "land vehicle" individual.

We will say that these different representations of the same real-world

individual are im ages of each other. When two images have attributes

in common, their values must be the same. Since categories are disjoint

within blocks, an individual can have an image in at most one category

of a block. For example, a "vehicle" individual can have an image in

one of the propulsion categories and in one of the medium categories.

When an individual is inserted into one category, it is important

that images be "simultaneously" inserted into all other applicable categories.

Similarly, when an individual is deleted from a category, images must be

"simultaneously" deleted from all applicable categories. Finally, when

an individual is modified, its images must be modified "simultaneously"

in accordance. This simultaneous activity is provided by operations

automatically t r i g g e r e d by the original operation. An individual must

not be inserted into a category more than once by either a direct or trig

gered operation. If all categories have declared keys then such duplicate

insertions can be prevented, otherwise no guarantees can be made.

We will allow categories to have whatever attributes are necessary

for the application on hand. We will not insist that attributes be inherited

-28-

from supercategories as this may force the inclusion of extraneous detail.

We will allow category attributes (e.g. PC and MC in Figure 2) to take

on "null" names. This may mean an individual does not belong in any

category, or that the category has not yet been assigned. For example,

if we insert a motorboat into "vehicle", its PC attribute will take the

value "motorized vehicle", while its MC attribute will take on the "null"

name. Only those categories relevant to the application on hand need

to be declared as generic objects. Again this does not force the inclu

sion of extraneous detail. As a result, the union of the subcategories

of a category may be a p r o p e r subset of the category itself.

In [11] r where all generics had attribute keys, we insisted (with some

minor exceptions) that all subcategories have the same key as their parent

category. This allowed the images of an individual to be identified by

using associative naming. Now we need a new method for naming images.

We will therefore introduce a second indirect naming operator " V . * If

"n" is the name of an individual and "S" is the selector for a category

attribute, then "n^S" is the image of "n" in the category "nVS". For

example, if "v" is an individual vehicle, and vVPC = "motorized vehicle"

then v^PC is the image of v in "motorized vehicle". Similarly, if

vVMC = "air vehicle" then v4-MC is the image of v in "air vehicle". If

nVS = "null" then n^S is undefined. Since the category in which an image

appears is given by the corresponding category attribute, indirect image

naming is usually done inside a "case statement" - for example:

case vVMC of
air vehicle: with v+MC do S ;———--- --

land vehicle: with v^MC do S ;
null: S

« n

*The symbol "+" is chosen to suggest an arrow pointing down the generaliza
tion hierarchy. It may be read as "G-arrow".

-29-

When an individual is inserted or modified, its a g g r e g a t io n com ponents

are specified e x p l i c i t l y as described in Section 3. In contrast, when

an individual is inserted or modifed, its g e n e r a l iz a t io n im ages are deter

mined i m p l i c i t l y by triggered operations. To understand how this can

be done, we must consider the invariants maintained by the triggers. There

are three generalization invariants for a generic G.

Let S be a selector of G for categories in the block {g , , ..., G }, then
I n

i) for each individual r. in G . , there is an individual r in G such
1 l

that r+S = r ..i .

ii) for each individual r in G, if rVs = G^ then there is an individual

r in G such that r+S = r., otherwise rVs E null and r-l-S is undefined,
i i i

iii) for each individual r in G, if there is an individual r^ in G^

such that r+S = r then rVs = G. and rVx = r.Vx for all common selectors X.
i i i

The first invariant ensures G. is a subset of G. The second invariant
l

ensures that individuals in G, which are categorized as G^, have an image

in G^. The third invariant ensures that images are consistent with each

other. Now we will consider how these invariants can be maintained for

insert, modify and delete operations.

Assume an individual r is inserted into G. If there is a supercategory

of G, say G ' , then an image r' will be inserted by a trigger into G ’ and

r'+S1 (for the appropriate selector S') will be made equivalent to r.

Similarly, if rVs = G^ then an image r^ will be inserted by a trigger

into G^ and r-t-G will be made equivalent to r^. If rVs = null then no

image will be inserted. These triggered insertions may propagate up and/or

down the generalization hierarchy always moving away from G. Null names

are used as values for attributes that do not also occur in r.

-30-

Assume an individual r in G is modified. If no category attribute

is changed, then triggers will simply modify the superimages and subimages

of r accordingly. However, if a category attribute S of r is modified

from G. to G ., then the image of r in G. is deleted and a new image (say r.)
i J i D

is inserted into G_.. The name r+S is then made equivalent to r . These

operations are performed automatically by triggers.

Assume an individual r in G is deleted. Triggered delete operations

will then remove all its subimages. There are two ways to handle a super

image (say r') of r. One way is to delete it. The other way is to modify

r' so that the relevant category attribute (say S') takes on the "null"

name. In this case r'+S' will become undefined. The appropriate way

of handling superimages is determined by semantic considerations and can

be selected when the generic G is specified.

We will now consider an example of how indirect image naming is supported

by triggers. Figure 4 shows several individuals in the "vehicle" generaliza

tion hierarchy. We will assume that the tables are initially empty, and

show how the individuals are inserted. Since we have not yet discussed

operative naming over generalization hierarchies, we must rely on associative

naming. To this end, ID will be taken as an attribute key for each generic.

The first insertion is:

vehicle <= <16, 347, motorized vehicle, air vehicle>.

This insertion creates the top individual in "vehicle" and, via triggers,

the individuals in "motorized vehicle" and "air vehicle". These latter

two individuals contain "null" names since neither the "fuel capacity"

nor the "wingspan" is determined by the original insertion. As a result

of the triggered insertions, the following equivalences hold:

vehicle[16]^PC = motorized vehicle[16]
vehicle [16]'I'MC = air vehicle [16]

-31-

v e h ic le :

identification
number (ID)

appraised
value (A)

propulsion
category (PC)

medium
category (MC)

16 347 motorized vehicle air vehicle

142 63 wind-propelled vehicle -

176 - - land vehicle

128 - man-powered vehicle -

man-powered vehicle:

identification
number (ID)

muscle
group (M)

128 leg

air vehicle:

identification
number (ID)

wingspan

(W)

16 -

motorized vehicle:

identif ication
number (ID)

fuel
capacity (F)

16 -

wind-propelled vehicle:

land vehicle:

identification
number (ID)

surface
type (S)

176 rail

identification
number (ID)

sail area
(SA)

142 -

F ig u re 4 : In d iv id u a ls in the "v e h ic le " g e n e ra liz a t io n h ie ra rch y .

The wingspan for "air vehicle[16]" can be entered by writing:

air vehicle [16] Vw <^> 95.

The second insertion is:

vehicle <== <142, 63, wind-propelled vehicle, ->.

This insertion creates the second individual in "vehicle", and via triggers,

the individual in "wind-propelled vehicle". At this time, the following

statements ho l d :

vehicle[142]^PC = wind-propelled vehicle[I42]
vehicle[142]^MC is undefined.

The third insertion is:

land vehicle <= <176, rail>.

This insertion creates the individual in "land vehicle" and, via triggers,

the third individual in "vehicle". Notice that this latter individual

has the "null" name (-) for propulsion category but "land vehicle" for

medium category. The medium category is determined by the original inser

tion. At this time, the following statements hold:

vehicle[176]^PC is undefined,
vehicle[176]^MC = land vehicle[176].

The final insertion is:

man-powered vehicle <= <128, leg>.

This insertion creates the individual in "man-powered vehicle" and, via

triggers, the last individual in "vehicle". Suppose we now modify the

last individual in "vehicle" by writing:

vehicle [128] VPC <4=> motorized vehicle.

This modification will cause, via triggers, the deletion of the individual

in 1 man-powered vehicle" and the insertion of a second individual in "motor

ized vehicle". At this time, the following equivalence holds:

vehicle[128]+PC = motorized vehicle[128].

-32-

-33-

So far we have seen how the triggered invocation of operations

can maintain the generalization invariants and simultaneously support

indirect image names. This means that the generics in a generalization

hierarchy do not need to have the same attribute keys or even any attribute

keys at all. Each generic can now be designed individually without the

forced inclusion of certain key attributes. Since the basic triggering

mechanism is always the same, it can be built in as a primitive rather

than redefined for each generalization hierarchy.

For a particular generalization hierarchy, it is only necessary

to specify w hich operations should be triggered. The tim e of triggering

and the p a ra m eters to be used are completely determined by the generaliza

tion invariants as previously described. Since the triggered invocation

of operations can affect operative naming, the operations to trigger

must be decided carefully. Sometimes defined operations must be triggered

and other times primitive operations must be triggered. We will give

am example to illustrate the specification of triggered operations.

Let's consider a company which employs many s e c r e t a r i e s . When

a secretary is h i r e d , she is a s s ig n e d either as a p o o l s e c r e t a r y or

as a p e r s o n a l S e c r e t a r y . Depending on this assignment, she will either

e n t e r the secretarial pool or be en g a g ed as a personal secretary. A

secretary may change, from one assignment to the other several times.

A secretary may te rm in a te her employment at any time. Figure 5 is a

generalization hierarchy for "secretary". The asterisks on the two "HIRE"

operations indicate that they are never invoked directly - they are only

triggered by the higher "HIRE" operation. They are named explicitly for

the purposes of operative naming over "pool secretary" and "personal sec

retary" .

-34-

A secretary has certain attributes independent of her present assign

ment (e.g. a social security number and a birthdate). However, a secretary

secretary: HIRE
--------------- ASSIGN

____ TERMINATE

personal *HIRE
secretary: ENGAGE

*HIRE
ENTER

pool
secretary:

Figure 5 : A generalization hierarchy for "secretary".

acquires additional attributes on entering the secretarial pool (e.g.

a typing station) and different additional attributes on engagement as

a personal secretary (eTg. a private office). We will assume the attri

bute "social security number", and the operations "HIRE", "ASSIGN", "ENTER"

and "ENGAGE", are used to identify individual secretaries. Figure 6

is an integrated specification of "secretary".

When a secretary is hired, a HIRE operation is triggered on either

"pool secretary" or "personal secretary" depending on the category assigned.

If the category is "pool secretary" then the triggered HIRE will use

for the "typing station" attribute. When the secretary actually enters

the secretarial pool, "typing station" is updated via the ENTER operation.

Notice that an ENTER operation cannot be completed until the secretary

is hired into the secretarial pool.

When a secretary is assigned to another category, her "image" must

be removed from "pool secretary" and placed in "personal secretary" or

vice versa. Since the secretary is not being hired at this time, it is

not appropriate to trigger a HIRE operation. Instead a primitive "insert"

operation should be used. Primitive "delete" operations are used for

-35-

var secretary: generic
category = (pool secretary, personal secretary)

of_
aggregate [N]

N: social security number;
B: birthdate;
C: category

end

operations [HIRE, ASSIGN]

HIRE(n, b, c): secretary <= <n, b, c>
{HIRE(pool secretary)/ HIRE(personal secretary)}

ASSIGN(s, c): sVC <=> c
{insert(pool secretary), delete(personal secretary)/
delete(pool secretary), insert(personal secretary)}

TERMINATE(s): secretary => s
{delete(pool secretary), delete(personal secretary)}

end .

var pool secretary: generic ■ ■

"
aggregate [N] .

N: social security number;
. T: typing station

end

operations [HIRE, ENTER] .

*HIRE (n , t): pool secretary <= <n, t>

ENTER(po, t) : poVT <=> t . ■ ' ' ; ■ ■ ■

end ,

var personal secretary: generic

.

. aggregate [N]
. N: social security number;

' 0: office

en<̂

operations [HIRE, ENGAGE]

*HIRE(n, o) : personal secretary <= <n, o>

ENGAGE (pe, o) : peVO <=» o

. end . ■

(s, po and pe are names for a secretary, a pool secretary and a per
sonal secretary, respectively)

F igu re 6 : A s p e c if ic a t io n fo r the g e n e ra liz a t io n h ie ra rch y o f F ig u re 5.

-36-

removal from a category. If these activities were significant to the user,

defined operations would have been declared. Triggered invocation of these

operations could then be specified. Since we do not want to force the

declaration of "extraneous" operations, we allow both primitive and defined

operations to be triggered.

The HIRE operation on "pool secretary" is (by assumption) only trig

gered by the HIRE operation on "secretary". There is therefore no need to

specify any triggered operations for HIRE on "pool secretary". If this

operation could be invoked directly, then a triggered HIRE on "secretary"

should be specified. The ENTER operation on "pool secretary" modifies an

attribute which is unique to this category. There is therefore no need

for a triggered modify operation on "secretary". For similar reasons, no

triggered operations are specified for HIRE and ENGAGE on "personal secre

tary".

Now let's consider operative naming over the "secretary" example.

Operative names over a generalization hierarchy are often quite ambiguous

when stated in English. This is particularly true when individuals can

dynamically change categories. The name "pool secretary[last entered]"

refers to the pool secretary who last entered the pool - either by being

hired into it or by being reassigned to it. The name "pool secretary

[last hired]" refers to the pool secretary who was last hired d i r e c t l y

into the pool. There may be other pool secretaries hired after this one,

who entered the pool fo llo w in g re a s s ig n m e n t . To name the secretary who

was hired last of all those in the pool, it is necessary to write:

secretary [last, where C = pool secretary, hired]-t-C.

In this name we used the syntax for combined naming mentioned in section 2.

-37-

In previous sections we have given several examples of integrated

specifications. However, these have been ad hoc examples designed to

illustrate certain concepts or techniques. Now we will give some exam

ples which can be used as benchmarks for comparing integrated specifica

tions with other specification techniques. The examples are specifica

tions of standard abstractions from the systems' programming domain -

namely, "matrix", "stack", "queue", "symboltable" and "expression".

These abstractions differ from those of previous sections in that a

given system may contain several in s t a n c e s of each abstraction. For

example, a compiler may contain several stacks and an operating system

may contain several queues. Each of these instances could in principle

be specified separately. However, this would cause an undesirable repe

tition of detail. A better approach is to give a single p a ra m e te r iz e d

specification of each abstraction. For each instance, it is only neces

sary to specify which parameters are to be used. We therefore introduce

a parameterized form of integrated specification which will be called a

temp l a t e . •

A template differs from a regular specification in only one respect -

each generic identifier is a p a ra m eter rather than a d e c l a r e d v a r i a b l e .

Figure 7 shows the template for the specification of Figure 6. Notice

that the reserved work "var" (variable) has been replaced by "p a r " (par-

meter) before each generic identifier. Further, each generic identifier

has been listed in the template heading. To specify "secretary" relative

to the company IBM, we need only to write:

var (IBMsec, IBMpoolsec, IBMpersec):
(secretary, pool secretary, personal secretary).

5. Examples o f In tegrated S p e c if ic a t io n s

-38-

template (secretary, pool secretary, personal secretary)

par secretary: generic
category = (pool secretary, personal secretary)

aggregate [N]

, N: social security number;
B: birthdate;

_ . C: category
end

operations [HIRE, ASSIGN]

HIFE(n, b, c): secretary <= <n, b, c>
{HIRE (pool secretary)/ HIRE(personal secretary)}

ASSIGN(s, c) : sVC <=> c

{insert(pool secretary), delete(personal secretary)/
delete(pool secretary), insert(personal secretary)}

TERMINATE(s): secretary => s
{delete(pool secretary), delete(personal secretary)}

end

par pool secretary: generic

of
aggregate [N]

N: social security number;
T: typing station

end

operations [HIRE, ENTER]

*HIRE(n, t) : pool secretary <= <n, t>

ENTER (po, t) : poVT <=> t

end

par personal secretary: generic

of
aggregate [N]

N: social security number;
0: office

end

operations [HIRE, ENGAGE]

*HIRE(n, o) : personal secretary <= <n, o>

ENGAGE (pe, o) : peVO <=> o

end - , vct-t i-

endtemplate

F igu re 7: A s p e c if ic a t io n tem plate fo r the s p e c if ic a t io n o f F igu re 6.

-39-

Similar ly, to specify "secretary" relative to CDC, we may write:

var (CDCsct, CDCplsct, CDCprsct):
(secretary, pool secretary, personal secretary).

The effect of these statements is a pairwise substitution of declared

variables for parameters in the body of the template. Substitutions

therefore occur in bo th the structural and the behavioral parts of the

template. The n^t result is one specification tailored to IBM and another

specification tailored to CDC. All the examples in this section will

be given in the form of templates.

A specification for "matrix" is given in Figure 8. In essence a

matrix is a set of entries; each entry has an associated column and row,

and contains some element. Since an entry can be uniquely identified

by its row and column, [I, J] is declared as an attribute key. This

declaration has the effect of preventing two entries with the same row

and column. The operation ENTER constructs and inserts an entry. It

will generate an error condition only when an entry at (i, j) already

exists. The operation REMOVE deletes the entry named "matrix[i, j]".

It will generate an error condition only when this name is undefined -

template (matrix)
par matrix: generic

of
aggregate [I, J]

I: column;
J: row;
E : element

end

operations.
ENTER(i, j, e) : matrix <̂= <i, j , e>
REMOVE (i , j): matrix => matrix[i, j]

retrieval
FIND(i, j): matrix[i, j].E

end

endtemplate .

F ig u re 8 : A s p e c if ic a t io n fo r "m a trix " .

-40-

i.e. no entry has been entered at (i, j). The only retrieval operation

is FIND (i, j) which returns the E attribute of the entry named "matrix[i, j]".

It will generate an error condition when this name is undefined.

Notice that the "matrix" specification does not constrain the implementor

in selecting his implementation technique. However, it does delineate

the basic mechanisms the implementor must provide. Since neither generaliza

tion nor operative naming is utilized, these mechanisms do not have to

be supported. It is only necessary to support the aggregation of primitive

components and associative naming. The aggregation could be implemented

by physical adjacency of components, or by encoding the row and column

components as an address. The associative naming could be implemented

by hashing, or by using multilists as in a sparse array representation.

A specification for "stack" is given in Figure 9. Essentially a

stack is a set of entries; each entry contains some element. Since

different entries may contain the same element, stack has no attribute

key. Instead entries are named operatively using the operation PUSH.

An operation key [PUSH] is therefore declared. The operation PUSH constructs

and inserts an entry. It will never generate an error condition. The

operation POP deletes the last entry which was pushed. It will generate

template (stack)
par stack: generic

of
aggregate

E: element
end

operations [PUSH]
PUSH(e): stack «= <e>

P O P : stack => stack [last pushed]
retrieval

TOP: stack [Iasi: pushed] .E
end

endtemplate

F ig u re 9: A s p e c if ic a t io n fo r "s ta ck " .

-41-

an error condition only when the entry name "stack[last pushed]" is undefined -

i.e. when the stack is empty. The only retrieval operation is TOP which

returns the E attribute of the last entry pushed. It will generate an

error whenever the name "stack[last pushed]" is undefined.

The "stack" specification again guides the implementor without constraining

him. In this case, the implementors sole task is to design an operative

naming mechanism. There are many ways this could be done using sequential

positioning and list structuring techniques. A comparison of the "matrix"

and "stack" abstractions indicates that the only fundamental difference

between them is the choice of naming mechanism.

A specification for "queue" is given in Figure 10. Intuitively,

a queue is very similar to a stack - the basic difference being that one

preserves a FIFO discipline and the other preserves a LIFO discipline.

If a specification language supports intuitive abstraction mechanisms,

then the specifications for stack and queue should explicitly reveal their

similarities and differences. A comparison of Figures 9 and 10 indicates

that these similarities and differences are indeed revealed. Stack and

queue utilize the simplest forms of operative naming. They each have one

insert operation, one delete operation and no modify operations - the insert

operation is used for naming.

template (queue)
par queue: generic

of
aggregate

E: element
end

operations [ADD]
ADD(e): queue <= <e>
REMOVE: queue => queue [first added]

retrieval

FRONT: queue[first added].E
end

endtemplate

F ig u re 10: A s p e c if ic a t io n fo r "queue".

-42-

A specification for "symboltable" is given in Figure 12. This spec

ification is interesting in that aggregation is employed in a non-trivial

way and that both operative and associative naming is used. Our example

is taken from Guttag [5], where it is used to demonstrate "algebraic"

specifications. The symboltable is designed for the compilation of a

block structured language. When a block, is e n t e r e d , the i d e n t i f i e r s and

their a t t r i b u t e s (as declared in the block heading) are added to the symbol

table. When a block is l e f t , these entries are removed. As the body of

a block is being processed, the attributes of identifiers must be fo u n d

from the symboltable. When the same identifier is declared in several

blocks, it is always the attributes of the identifier declared in the

closest enclosing block that are found. An identifier should not be declared

twice in the same block.

If we think of a symboltable as an abstract system, there are two

non-primitive abstractions involved. First, there is the abstraction

"block" which has two associated operations - ENTER and LEAVE. A block

has no attributes of interest - in most block structured languages, blocks

are not even given identifiers. Secondly, there is the abstraction "symbol".

A symbol is a relationship between a block, an identifier and some "attributes".

The only direct operation on "symbol" is the ADD operation. A symboltable

therefore has the aggregation hierarchy shown in Figure 11.

symbol ADD

ENTER block
LEAVE

Figure 11: The aggregation h ie ra rch y fo r "sym boltab le".

-43-

template (symbol, block)
par symbol: generic

o£
aggregate [B, I]

B: block name;
I: identifier;

A: attributes
end

operations
ADD(i, a): symbol <= <block[last entered], i, a>

retrieval
FIND(i): symbol[last, where I = i, added].A

en^

par block: generic
of
aggregate

en^

operations [ENTER]
ENTER: block <= < >
LEAVE: block => block[last entered] {delete(symbol)}

end

endtemplate

Figure 12 : A specification for "symboltable"•

Let's consider the specification of "symbol" first. The components

of "symbol" are "block", "identifier" and "attributes". Since a block

and an identifier are sufficient to uniquely determine a symbol, an attribute

key [B, I] is declared. The operation ADD constructs and inserts a symbol.

The "identifier" and "attributes" for the symbol are supplied as para

meters. The "block name" is always the same - "block[last entered]".

The ADD operation will generate an error condition on two occasions. One

occasion is when a second symbol with the same key values is constructed -

i.e. when an identifier is declared twice in the same block. The other

occasion is when the name "block[last entered]" is undefined - i.e. when

no block has been entered. The only retrieval operation FIND returns the

"attributes" of the most recently added symbol with identifier "i". *

* To avoid iteration, we have used the "combined" form of naming mentioned
in Section 2.

This operation will generate an error condition when the name

"symbol[last, where I = i, added]"

is undefined - i.e., when the identifier "i" is not declared.

The specification of "block" is very simple. A block has no categories

or components of interest. An operation key must therefore be declared.

Since blocks are named by the relative order of entry, [ENTER] is declared

as operation key. The operation ENTER constructs and inserts a block.

This operation never generates an error condition. The operation LEAVE

deletes the last block entered. It will generate an error condition when

the name "block[last entered]" is undefined - i.e. when no block has been

entered. To preserve the second aggregation invariant, a triggered delete

operation is specified. This will remove all symbols belonging to the

block just left.

The simplicity of the "symboltable" specification arises from the

explicit support of aggregation with its two invariants and appropriate

naming mechanisms. The decomposition of "symboltable" into the two abstract

objects "block" and "symbol" is critical - it means no more to "LEAVE"

a symbol than it does to "ADD" a block. The specification suggests to the

implementor that associative naming and non-trivial aggregation must be

supported in an implementation of "symbol". The implementation of "block"

can be quite simple - an integer "counter" would suffice.

A specification of "expression" is given in Figure 14. This specifica

tion is interesting because it involves a recursive coupling of aggregation

and generalization, together with operative naming. We will consider

expressions formed from operators (e.g. +, -, x, /) and elements (e.g.

3, x, y, 5). There are two categories of expression - those which in

volve operators (composite expressions) and those which do not (primitive

-44-

-45-

expressions) . A composite expression has three components - a left expres

sion, a right expression and an operator. A primitive expression has one

component - an element. Notice that primitive expressions and composite

expressions have no components in common. The only component of an expres

sion is its category. Expression (exp), composite expression (comp), and

primitive expression (prim) therefore form the aggregation and generaliza

tion hierarchies shown in Figure 13.

G e n e ra liz a t io n A g g reg a tio n

exp: prim: comp:

7 ̂ I /I\
prim: . comp: element e x p : ' ' operator

category

Figure 13: Aggregation and. generalization hierarchies for "expression".

Since an exp has only the attribute "category", an exp is not made

directly. Instead, either a prim or a comp is made and this triggers the

creation of an exp. An operation MAKE is therefore defined for prim and

comp. There are no particular kinds of restricted access which charac

terize expressions and so no special retrieval operations are defined.

Let's consider the specification of expression in Figure 14.

Since a category is not sufficient to uniquely identify an exp, exp

has no attribute key. To provide operative naming over exp, we have

defined an operation MAKE. As indicated by the asterisk, this operation

is triggered by operations on prim and comp - it is not invoked directly.

Neither attribute keys nor operation keys are specified for prim and comp

-46-

template (exp, prim, comp)
par exp: generic

category = (prim, comp)
of
aggregate

C: category
end

operations [MAKE]

*MAKE(c): exp <= <c>
end

par prim: generic
of
aggregate

E: element
end

operations
MAKE(el): prim <= <el> {MAKE(exp)}

end

par comp: generic
of
aggregate

L: expression name;
0: operator;
R: expression name

end

operations
MAKE(1, o, r) : comp <4= <1, o, r> {MAKE (exp)}

end
endtemplate

Figure 1 4 : A specification for "expression".

This means their individuals can only be named indirectly via exp. MAKE

operations on prim and comp must trigger MAKE operations on exp to pre

serve the generalization invariants.

To illustrate possible retrieval operations over expressions, we will

write a procedure to print an expression in postfix form. Assume that "e"

is an (operative) name for an exp. The image of "e", in either prim or

comp, is given by "e+C". If "e4-C" is in comp, its left and right expres

sions are named by "e+CVL" and "e+CVR" respectively.

POSTFIX(e):
case eVC of_

prim: PRINT(e+C.E)
comp: {POSTFIX(e+CVR); POSTFIX(e+CVL); PRINT(e+C.0)}

end

-47-

A generic object in an aggregation/generalization hierarchy has

four "external" manifestations: the o p e ra t io n s which characterize its

behavior, and the a t t r i b u t e s , r e l a t i o n s h i p s , and c a t e g o r i e s which

characterize its structure. Internally, a generic object is a (possibly

complex) collection of data structures and algorithms for representing

and accessing individuals over storage devices. It is important that

the behavioral specification of a generic object be independent of these

internal details. Individual operands must be identified only in terms

of their external manifestations. In this way, the details of struc

tural representation are factored out of behavioral specifications. ' ■

For this approach to be successful, the identification mechanism

for individuals must be complete - in the sense that a l l external manifesta

tions can be utilized. We have therefore provided four mechanisms for r f

identifying individuals: :

i) operative naming which utilizes the temporal order of operation
applications to individuals,

ii) associative naming which utilizes the uniqueness of an individual's
attributes, : ' -•

iii) component naming which utilizes the relationships in which an ■
individual participates, and

iv) image naming which utilizes the categories to which an individual's
images belong.

Nevertheless, it is not clear that these naming mechanisms utilize the

external manifestations f u l l y or in the most a p p ro p r ia te way.

We have seen, for example, that the combined form of naming discussed

in Section 2 is useful for eliminating some iterations from behavioral

specifications. There does not seem to be any a b s o lu t e criterion as to

where naming mechanisms should end and behavioral specifications should

6. Conclusion , ;

-48-

begin. It will therefore be useful to establish some r e l a t i v e measures

of completeness. For example, we hope to show in a forthcoming paper

that Guttag's "algebraic specifications" can be mechanically transformed

to "integrated specifications" w ith o u t in t r o d u c in g any a d d it io n a l r e p r e s e n t a

t io n d e t a i l .

It is clear that a virtual machine can be constructed which will

execute integrated specifications as if they were high-level programs.

This virtual machine must provide the representation schemata and access

functions necessary to implement the four naming mechanisms over storage

devices. It is unlikely that f i x e d schemata and functions will be

found which are satisfactory in all applications. The virtual machine

will probably contain a menu from which schemata and functions can be

selected for each application. This selection can be supplied by external

human input (as is the current practice in database management systems),

or by powerful internal optimization features.

We plan to investigate the design of a programming language based

on integrated specifications. Our current thinking is that a program

in this language would consist of two distinct parts. One part is an

integrated specification, and the other part is a selection of appropriate

representation schemata and access functions. A user of the program only

needs to be aware of the first part. For this purpose, integrated

specifications need a fixed set of control structures, and an assertion

(or query) language. An appropriate assertion language might be a typed

predicate calculus with the operators "V", " V , and and the relation

"=" built-in.

-49-

We are grateful to Bob Keller for several stimulating interactions -
he pointed out the connection of our work to "abstract syntax". Gary

Lindstrom and Martin Griss made valuable comments about our "programming
language" examples.

R e f e r e n c e s :

[1] Codd, E. F . , A relational model of data for large shared data banks.
Comm. ACM IZ , 6 (June 1970), 377-387.

[2] Codd, E. F . , Further normalization of the data base relational model,
in C ourant Computer S c ie n c e Sym posia 6 : Data B ase S y stem s, Prentice-Hall,
Englewood Cliffs, N.J., May 1971, 33-64.

[3] Codd, E. F . , Relational completeness of data base sublanguages. In
C ourant Computer S c ie n c e Symposia 6 : Data B ase S y stem s , Prentice-Hall,
Englewood Cliffs, N.J., May 1971, 65-98.

[4] Guttag, J. V . , The specification and application to programming of
abstract data types. Ph.D. Thesis, University of Toronto, Department
of Computer Science, 1975.

[5] Guttag, J. V . , Abstract data types and the development of data
structures. Comm. ACM 2 0 , 6 (June 1977), 396-404.

[6] Liskov, B. H., and Zilles, S. N., Specification techniques for data
abstractions. IEEE T ra n s , on S o ftw a re E n g in e e r in g S E 1 , 1 (Mar. 1975),
7-19. '

[7] Liskov, B. H . , Synder, A., Atkinson, R. , and Schaffert, C . ,
Abstraction mechanisms in CLU. Corrm. ACM 2 0 , 8 (Aug. 1977) 564-576.

[8] McCarthy, J . , Towards a mathematical science of computation. Proc.
IFIP Cong. 1962, North-Holland Pub. Co., Amsterdam, 1962.

[9] Parnas, D. L . , A technique for software module specification with
examples. Comm. ACM 1 5 , 5 (May 1972), 330-336.

[10] Smith, J. M . , and Smith, D. C. P., Database abstractions: aggregation.
Comm. ACM 2 0 , 6 (June 1977), 405-413.

[11] Smith, J. M . , and Smith, D. C. P., Database abstractions: aggregation
and generalization. ACM T ra n s , on D atabase S y s t . 2 , 2 (June 1977),
105-133.

A ckn ow led g em en ts :

