14,076 research outputs found

    The optical and near-infrared properties of nearby groups of galaxies

    Full text link
    We present a study of the optical (BRI) and near-infrared (JHK) luminosity fuctions (LFs) of the GEMS sample of 60 nearby groups of galaxies between 0<z<0.04, with our optical CCD photometry and near-IR photometry from the 2MASS survey. The LFs in all filters show a depletion of galaxies of intermediate luminosity, two magnitudes fainter than L*, within 0.3 R{500} from the centres of X-ray faint groups. This feature is not as pronounced in X-ray bright gropus, and vanishes when LFs are found out to R{500}, even in the X-ray dim groups. We argue that this feature arises due to the enhanced merging of intermediate-mass galaxies in the dynamically sluggish environment of low velocity-dispersion groups, indicating that merging is important in galaxy evolution even at z~0.Comment: to appear in the proceedings of the ESO workshop "Groups of Galaxies in the Nearby Universe", Santiago, Dec 5-9, 2005. Eds. I. Saviane, V. Ivanov, & J. Borissova (Springer Verlag); 5 page

    Acceptability of artificial intelligence (AI)-led chatbot services in healthcare: A mixed-methods study

    Get PDF
    Background Artificial intelligence (AI) is increasingly being used in healthcare. Here, AI-based chatbot systems can act as automated conversational agents, capable of promoting health, providing education, and potentially prompting behaviour change. Exploring the motivation to use health chatbots is required to predict uptake; however, few studies to date have explored their acceptability. This research aimed to explore participants’ willingness to engage with AI-led health chatbots. Methods The study incorporated semi-structured interviews (N-29) which informed the development of an online survey (N-216) advertised via social media. Interviews were recorded, transcribed verbatim and analysed thematically. A survey of 24 items explored demographic and attitudinal variables, including acceptability and perceived utility. The quantitative data were analysed using binary regressions with a single categorical predictor. Results Three broad themes: ‘Understanding of chatbots’, ‘AI hesitancy’ and ‘Motivations for health chatbots’ were identified, outlining concerns about accuracy, cyber-security, and the inability of AI-led services to empathise. The survey showed moderate acceptability (67%), correlated negatively with perceived poorer IT skills OR = 0.32 [CI95%:0.13–0.78] and dislike for talking to computers OR = 0.77 [CI95%:0.60–0.99] as well as positively correlated with perceived utility OR = 5.10 [CI95%:3.08–8.43], positive attitude OR = 2.71 [CI95%:1.77–4.16] and perceived trustworthiness OR = 1.92 [CI95%:1.13–3.25]. Conclusion Most internet users would be receptive to using health chatbots, although hesitancy regarding this technology is likely to compromise engagement. Intervention designers focusing on AI-led health chatbots need to employ user-centred and theory-based approaches addressing patients’ concerns and optimising user experience in order to achieve the best uptake and utilisation. Patients’ perspectives, motivation and capabilities need to be taken into account when developing and assessing the effectiveness of health chatbots

    Type II superlattices for infrared detectors and devices

    Get PDF
    Superlattices consisting of combinations of III-V semiconductors with type II band alignments are of interest for infrared applications because their energy gaps can be made smaller than those of any 'natural' III-V compounds. Specifically, it has been demonstrated that both InSb/InAsxSb1-x superlattices and Ga1-xInxSb/InAs superlattices can possess energy gaps in the 8-14 mu m range. The efforts have focused on the Ga1-xInxSb/InAs system because of its extreme broken gap band alignment, which results in narrow energy gaps for very short superlattice periods. The authors report the use of in situ chemical doping of Ga1-xInxSb/InAs superlattices to fabricate p-n photodiodes. These diodes display a clear photovoltaic response with a threshold near 12 mu m. They have also attained outstanding structural quality in Ga1-xInxSb/InAs superlattices grown on radiatively heated GaSb substrates. Cross-sectional transmission electron microscope images of these superlattices display no dislocations, while high resolution X-ray diffraction scans reveal sharp high-order superlattice satellites and strong Pendellosung fringes

    When the Senate plays politics with Supreme Court vacancies this hurts the public’s perceptions of the Court

    Get PDF
    The recent US Senate confirmation of Judge Ketanji Brown Jackson for the Supreme Court has shown how politicized such hearings have become. But how do these more contentious hearings influence how the American public thinks about the Supreme Court itself? In new survey research, Miles T. Armaly and Elizabeth A. Lane examine reactions to the US Senate’s approach to filling Justice Ruth Bader Ginsburg’s Supreme Court seat. They find that respondents who were told about the politicization of a past vacancy were less likely to express support for the Supreme Court and to favor reforms which would reduce its power

    Prototyping Operational Autonomy for Space Traffic Management

    Get PDF
    Current state of the art in Space Traffic Management (STM) relies on a handful of providers for surveillance and collision prediction, and manual coordination between operators. Neither is scalable to support the expected 10x increase in spacecraft population in less than 10 years, nor does it support automated manuever planning. We present a software prototype of an STM architecture based on open Application Programming Interfaces (APIs), drawing on previous work by NASA to develop an architecture for low-altitude Unmanned Aerial System Traffic Management. The STM architecture is designed to provide structure to the interactions between spacecraft operators, various regulatory bodies, and service suppliers, while maintaining flexibility of these interactions and the ability for new market participants to enter easily. Autonomy is an indispensable part of the proposed architecture in enabling efficient data sharing, coordination between STM participants and safe flight operations. Examples of autonomy within STM include syncing multiple non-authoritative catalogs of resident space objects, or determining which spacecraft maneuvers when preventing impending conjunctions between multiple spacecraft. The STM prototype is based on modern micro-service architecture adhering to OpenAPI standards and deployed in industry standard Docker containers, facilitating easy communication between different participants or services. The system architecture is designed to facilitate adding and replacing services with minimal disruption. We have implemented some example participant services (e.g. a space situational awareness provider/SSA, a conjunction assessment supplier/CAS, an automated maneuver advisor/AMA) within the prototype. Different services, with creative algorithms folded into then, can fulfil similar functional roles within the STM architecture by flexibly connecting to it using pre-defined APIs and data models, thereby lowering the barrier to entry of new players in the STM marketplace. We demonstrate the STM prototype on a multiple conjunction scenario with multiple maneuverable spacecraft, where an example CAS and AMA can recommend optimal maneuvers to the spacecraft operators, based on a predefined reward function. Such tools can intelligently search the space of potential collision avoidance maneuvers with varying parameters like lead time and propellant usage, optimize a customized reward function, and be implemented as a scheduling service within the STM architecture. The case study shows an example of autonomous maneuver planning is possible using the API-based framework. As satellite populations and predicted conjunctions increase, an STM architecture can facilitate seamless information exchange related to collision prediction and mitigation among various service applications on different platforms and servers. The availability of such an STM network also opens up new research topics on satellite maneuver planning, scheduling and negotiation across disjoint entities

    Migrant workers’ exercise of agency during the COVID-19 pandemic in the UK: resilience, reworking and resistance

    Get PDF
    Drawing on qualitative data, we apply Katz’s conceptual framework of agency as resilience, reworking and resistance practices to theorise UK migrant workers’ responses to worsened employment conditions, stress of unemployment and reduced incomes during the pandemic. We draw attention to the range of micro practices they adopted to survive and rework existing conditions to their advantage - actions which rarely feature in academic writing, yet which recognise those who do not ‘resist’ as conscious agents who exercise power. Meanwhile, although outright oppositional responses to deteriorating employment conditions are rare, we demonstrate the nature of workplace union representation as a central factor in resisting managerial control. We extend Katz’s framework by considering the ‘how’ and ‘why’ behind migrant workers’ responses, to understand better their dynamic choices of resilience, reworking and resistance practices in the chaotic circumstances of the pandemic

    Square Patterns and Quasi-patterns in Weakly Damped Faraday Waves

    Full text link
    Pattern formation in parametric surface waves is studied in the limit of weak viscous dissipation. A set of quasi-potential equations (QPEs) is introduced that admits a closed representation in terms of surface variables alone. A multiscale expansion of the QPEs reveals the importance of triad resonant interactions, and the saturating effect of the driving force leading to a gradient amplitude equation. Minimization of the associated Lyapunov function yields standing wave patterns of square symmetry for capillary waves, and hexagonal patterns and a sequence of quasi-patterns for mixed capillary-gravity waves. Numerical integration of the QPEs reveals a quasi-pattern of eight-fold symmetry in the range of parameters predicted by the multiscale expansion.Comment: RevTeX, 11 pages, 8 figure

    Testing the existence of optical linear polarization in young brown dwarfs

    Full text link
    Linear polarization can be used as a probe of the existence of atmospheric condensates in ultracool dwarfs. Models predict that the observed linear polarization increases withthe degree of oblateness, which is inversely proportional to the surface gravity. We aimed to test the existence of optical linear polarization in a sample of bright young brown dwarfs, with spectral types between M6 and L2, observable from the Calar Alto Observatory, and cataloged previously as low gravity objects using spectroscopy. Linear polarimetric images were collected in I and R-band using CAFOS at the 2.2 m telescope in Calar Alto Observatory (Spain). The flux ratio method was employed to determine the linear polarization degrees. With a confidence of 3σ\sigma, our data indicate that all targets have a linear polarimetry degree in average below 0.69% in the I-band, and below 1.0% in the R-band, at the time they were observed. We detected significant (i.e. P/σ\sigma ≤\le 3) linear polarization for the young M6 dwarf 2MASS J04221413+1530525 in the R-band, with a degree of p∗\mathrm{p^{*}} = 0.81 ±\pm 0.17 %.Comment: Accepted for publication in MNRA

    Scaling relations in early-type galaxies belonging to groups

    Full text link
    We present a photometric analysis of a large sample of early-type galaxies in 16 nearby groups, imaged with the Wide-Field Camera on the Isaac Newton Telescope. Using a two-dimensional surface brightness decomposition routine, we fit Sersic (r^{1/n}) and exponential models to their bulge and disk components respectively. Dividing the galaxies into three subsamples according to the X-ray luminosities of their parent groups, we compare their photometric properties. Galaxies in X-ray luminous groups tend to be larger and more luminous than those in groups with undetected or low X-ray luminosities, but no significant differences in n are seen. Both normal and dwarf elliptical galaxies in the central regions of groups are found to have cuspier profiles than their counterparts in group outskirts. Structural differences between dwarf and normal elliptical galaxies are apparent in terms of an offset between their ``Photometric Planes'' in the space of n, r_e and mu_0. Dwarf ellipticals are found to populate a surface, with remarkably low scatter, in this space with significant curvature, somewhat similar to the surfaces of constant entropy proposed by Marquez etal (2001). Normal ellipticals are offset from this distribution in a direction of higher specific entropy. This may indicate that the two populations are distinguished by the action of galaxy merging on larger galaxies.Comment: Accepted for publication in MNRAS, 8 pages, 8 postscript figure

    Amplitude equations and pattern selection in Faraday waves

    Full text link
    We present a systematic nonlinear theory of pattern selection for parametric surface waves (Faraday waves), not restricted to fluids of low viscosity. A standing wave amplitude equation is derived from the Navier-Stokes equations that is of gradient form. The associated Lyapunov function is calculated for different regular patterns to determine the selected pattern near threshold. For fluids of large viscosity, the selected wave pattern consists of parallel stripes. At lower viscosity, patterns of square symmetry are obtained in the capillary regime (large frequencies). At lower frequencies (the mixed gravity-capillary regime), a sequence of six-fold (hexagonal), eight-fold, ... patterns are predicted. The regions of stability of the various patterns are in quantitative agreement with recent experiments conducted in large aspect ratio systems.Comment: 12 pages, 1 figure, Revte
    • …
    corecore