5 research outputs found

    Proteomics of diatoms: discovery of polyamine modifications in biosilica-associated proteins

    Get PDF
    Kieselalgen (Diatomee) sind eukaryotische einzellige Algen die hochspezifische Proteine (sogenannte Silaffine) erzeugen, um ‘nanopatterned’ Silica-ZellwĂ€nde herzustellen. Diese Proteine zeigen geringe oder gar keine Homologie innerhalb der Diatomeen Gattung und sind ausgiebig (extensiv) posttranslatorisch modifiziert. Zum Unterschied zu konventioneller Modifikation (z.B. Phosphorylierung und Glykosylierung) weisen Lysinreste von Silaffinen einige Polyaminketten mit sehr heterogenen molekularen Strukturen auf. Diese Modifikationen sind spezifisch fĂŒr Kieselalgen und spielen somit hypothetisch eine Rolle in der Biosilica-Synthese. Allerdings sind Lysin Polyamin Modifikationen, modifizierte Proteine und modifizierte Stellen kaum charakterisiert. Um diese Frage zu beantworten entwickelten wir eine Methode Polyamine zu quantifizieren und die Position von Polyamin-Modifikationen in engverwandte Proteine zu identifizieren (in morphologisch unterschiedliche Diatomeen Thalassiosira pseudonana, T. oceanica und Cyclotella cryptica). Wir zeigten, dass das Gesamtmuster von Polyaminender phylogenetischen NĂ€he dieser Kieselalgenarten folgt und dass diese Polyaminmodifikationen an Konsensusstellen sogar in Proteinen auftraten, die keine SequenzĂ€hnlichkeit zeigten.:CONTENTS Summary Zusammenfassung List of figures List of tables Abbreviations 1 Introduction 1.1 Diatoms 1.2 Diatom biosilica 1.2.1 Biosilicification in nature 1.2.2 Diatom biosilica structure and cell cycle 1.2.3 The cell biology of biosilica morphogenesis 1.3 The role of polyamine PTMs in diatom biosilicification 1.3.1 Identifying biomolecules associated with diatom biosilica 1.3.2 PTM complexity of biosilica-associated proteins 1.3.3 Lysine Δ-polyamine PTMs in biosilica-associated proteins 1.4 Mass spectrometry in PTM discovery 1.4.1 Modification-specific proteomics 1.4.2 Analysis of polyamine-modified lysines by MS 1.4.3 Fractionation of proteins and peptides prior to MS 1.4.4 MS/MS analysis in modification-specific proteomics 1.4.5 Bioinformatics tools for modification-specific proteomics 1.5 Rationale of the thesis 2 Aim of the thesis 3 Results and discussion 3.1 A method for analysis of Δ-polyamine PTMs 3.1.1 Establishing a method to analyse Δ-polyamines 3.1.2 Method applicability for lysine PTM profiling 3.1.3 Profiling of lysine PTMs in silaffin-3 3.2 Profiling lysine PTMs in biosilica extracts 3.2.1 Lysine PTM profile and characteristic fragments 3.2.2 Elucidation of phosphopolyamine structures 3.2.3 LysinePTMprofilesofAFSMextracts 3.2.4 Comparison of AFIM and AFSM profiles in T. pseudonana 3.2.5 Phylogenetic relationship across three diatom species 3.3 PTM localization and discovery of consensus motifs 3.3.1 Multiple protease strategy for mapping lysine PTMs 3.3.2 Selection of deprotection technique 3.3.3 Mapping lysine PTMs on tpSil3 using iterative search strategy 3.3.4 Deconvolution of raw MS/MS spectra 3.3.5 PTM mapping by polyamine-specific fragments 3.3.6 Identification of consensus motifs harboring lysine PTMs 4 Conclusions and Outlook 5.1 Synthesis of polyamine standards 5.2 Isolation of biosilica-associated proteins 5.3 Expression of tpSil3 from synthetic gene 5.4 HCl hydrolysis 5.5 AQC-derivatization of amino acids and polyamines 5.6 LC-MS/MS analysis of QAC-derivatives 5.7 Amino acid measurement using UV-detection 5.8 Direct infusion MS/MS analysis 5.9 Acetylation of phosphopolyamines 5.10 31P-NMR measurements 5.11 Deglycosylation with TFMS 5.12 Treatment with HF·pyridine soluble complex 5.13 Anhydrous HF-treatment 5.14 Protein analysis by GeLC-MS/MS 5.15 Proteomics data processing A Appendix B Bibliography Acknowledgments Publications Declaration / ErklĂ€rungDiatoms are eukaryotic unicellular algae that employ highly specialized proteins called silaffins for making nanopatterned silica-based cell walls. These proteins share little or no homology across diatom species and are extensively post-translationally modified. Apart from conventional modifications (e. g., phosphorylation and glycosylation) lysine residues of silaffins bear polyamine chains with highly heterogeneous molecular structure. The latter appear to be specific for silicifying organisms and therefore hypothesized to play a key role in biosilica synthesis. However, polyamine modifications of lysines, modified proteins, and modification sites remain poorly characterized. To address these questions, we developed a method to quantify polyamines and identify sites of polyamine modifications in proteins from phylogenetically closely related, yet morphologically distinct diatoms Thalassiosira pseudonana, T. oceanica, and Cyclotella cryptica. We demonstrated that the overall pattern of polyamines followed the phylogenetic proximity across these diatom species and showed that polyamine modifications occurred at consensus sites even in proteins showing no sequence similarity.:CONTENTS Summary Zusammenfassung List of figures List of tables Abbreviations 1 Introduction 1.1 Diatoms 1.2 Diatom biosilica 1.2.1 Biosilicification in nature 1.2.2 Diatom biosilica structure and cell cycle 1.2.3 The cell biology of biosilica morphogenesis 1.3 The role of polyamine PTMs in diatom biosilicification 1.3.1 Identifying biomolecules associated with diatom biosilica 1.3.2 PTM complexity of biosilica-associated proteins 1.3.3 Lysine Δ-polyamine PTMs in biosilica-associated proteins 1.4 Mass spectrometry in PTM discovery 1.4.1 Modification-specific proteomics 1.4.2 Analysis of polyamine-modified lysines by MS 1.4.3 Fractionation of proteins and peptides prior to MS 1.4.4 MS/MS analysis in modification-specific proteomics 1.4.5 Bioinformatics tools for modification-specific proteomics 1.5 Rationale of the thesis 2 Aim of the thesis 3 Results and discussion 3.1 A method for analysis of Δ-polyamine PTMs 3.1.1 Establishing a method to analyse Δ-polyamines 3.1.2 Method applicability for lysine PTM profiling 3.1.3 Profiling of lysine PTMs in silaffin-3 3.2 Profiling lysine PTMs in biosilica extracts 3.2.1 Lysine PTM profile and characteristic fragments 3.2.2 Elucidation of phosphopolyamine structures 3.2.3 LysinePTMprofilesofAFSMextracts 3.2.4 Comparison of AFIM and AFSM profiles in T. pseudonana 3.2.5 Phylogenetic relationship across three diatom species 3.3 PTM localization and discovery of consensus motifs 3.3.1 Multiple protease strategy for mapping lysine PTMs 3.3.2 Selection of deprotection technique 3.3.3 Mapping lysine PTMs on tpSil3 using iterative search strategy 3.3.4 Deconvolution of raw MS/MS spectra 3.3.5 PTM mapping by polyamine-specific fragments 3.3.6 Identification of consensus motifs harboring lysine PTMs 4 Conclusions and Outlook 5.1 Synthesis of polyamine standards 5.2 Isolation of biosilica-associated proteins 5.3 Expression of tpSil3 from synthetic gene 5.4 HCl hydrolysis 5.5 AQC-derivatization of amino acids and polyamines 5.6 LC-MS/MS analysis of QAC-derivatives 5.7 Amino acid measurement using UV-detection 5.8 Direct infusion MS/MS analysis 5.9 Acetylation of phosphopolyamines 5.10 31P-NMR measurements 5.11 Deglycosylation with TFMS 5.12 Treatment with HF·pyridine soluble complex 5.13 Anhydrous HF-treatment 5.14 Protein analysis by GeLC-MS/MS 5.15 Proteomics data processing A Appendix B Bibliography Acknowledgments Publications Declaration / ErklĂ€run

    Shedding light on silica biomineralization by comparative analysis of the silica‐associated proteomes from three diatom species

    Get PDF
    Morphogenesis of the intricate patterns of diatom silica cell walls is a protein-guided process, yet to date only very few such silica biomineralization proteins have been identified. Therefore, it is currently unknown whether all diatoms share conserved proteins of a basal silica forming machinery, and whether unique proteins are responsible for the morphogenesis of species-specific silica patterns. To answer these questions, we extracted proteins from the silica of three diatom species (Thalassiosira pseudonana, Thalassiosira oceanica, and Cyclotella cryptica) by complete demineralization of the cell walls. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis of the extracts identified 92 proteins that we name ‘soluble silicome proteins’ (SSPs). Surprisingly, no SSPs are common to all three species, and most SSPs showed very low similarity to one another in sequence alignments. In-depth bioinformatics analyses revealed that SSPs could be grouped into distinct classes based on short unconventional sequence motifs whose functions are yet unknown. The results from the in vivo localization of selected SSPs indicates that proteins, which lack sequence homology but share unconventional sequence motifs may exert similar functions in the morphogenesis of the diatom silica cell wall

    Proteomics of diatoms: discovery of polyamine modifications in biosilica-associated proteins

    No full text
    Kieselalgen (Diatomee) sind eukaryotische einzellige Algen die hochspezifische Proteine (sogenannte Silaffine) erzeugen, um ‘nanopatterned’ Silica-ZellwĂ€nde herzustellen. Diese Proteine zeigen geringe oder gar keine Homologie innerhalb der Diatomeen Gattung und sind ausgiebig (extensiv) posttranslatorisch modifiziert. Zum Unterschied zu konventioneller Modifikation (z.B. Phosphorylierung und Glykosylierung) weisen Lysinreste von Silaffinen einige Polyaminketten mit sehr heterogenen molekularen Strukturen auf. Diese Modifikationen sind spezifisch fĂŒr Kieselalgen und spielen somit hypothetisch eine Rolle in der Biosilica-Synthese. Allerdings sind Lysin Polyamin Modifikationen, modifizierte Proteine und modifizierte Stellen kaum charakterisiert. Um diese Frage zu beantworten entwickelten wir eine Methode Polyamine zu quantifizieren und die Position von Polyamin-Modifikationen in engverwandte Proteine zu identifizieren (in morphologisch unterschiedliche Diatomeen Thalassiosira pseudonana, T. oceanica und Cyclotella cryptica). Wir zeigten, dass das Gesamtmuster von Polyaminender phylogenetischen NĂ€he dieser Kieselalgenarten folgt und dass diese Polyaminmodifikationen an Konsensusstellen sogar in Proteinen auftraten, die keine SequenzĂ€hnlichkeit zeigten.:CONTENTS Summary Zusammenfassung List of figures List of tables Abbreviations 1 Introduction 1.1 Diatoms 1.2 Diatom biosilica 1.2.1 Biosilicification in nature 1.2.2 Diatom biosilica structure and cell cycle 1.2.3 The cell biology of biosilica morphogenesis 1.3 The role of polyamine PTMs in diatom biosilicification 1.3.1 Identifying biomolecules associated with diatom biosilica 1.3.2 PTM complexity of biosilica-associated proteins 1.3.3 Lysine Δ-polyamine PTMs in biosilica-associated proteins 1.4 Mass spectrometry in PTM discovery 1.4.1 Modification-specific proteomics 1.4.2 Analysis of polyamine-modified lysines by MS 1.4.3 Fractionation of proteins and peptides prior to MS 1.4.4 MS/MS analysis in modification-specific proteomics 1.4.5 Bioinformatics tools for modification-specific proteomics 1.5 Rationale of the thesis 2 Aim of the thesis 3 Results and discussion 3.1 A method for analysis of Δ-polyamine PTMs 3.1.1 Establishing a method to analyse Δ-polyamines 3.1.2 Method applicability for lysine PTM profiling 3.1.3 Profiling of lysine PTMs in silaffin-3 3.2 Profiling lysine PTMs in biosilica extracts 3.2.1 Lysine PTM profile and characteristic fragments 3.2.2 Elucidation of phosphopolyamine structures 3.2.3 LysinePTMprofilesofAFSMextracts 3.2.4 Comparison of AFIM and AFSM profiles in T. pseudonana 3.2.5 Phylogenetic relationship across three diatom species 3.3 PTM localization and discovery of consensus motifs 3.3.1 Multiple protease strategy for mapping lysine PTMs 3.3.2 Selection of deprotection technique 3.3.3 Mapping lysine PTMs on tpSil3 using iterative search strategy 3.3.4 Deconvolution of raw MS/MS spectra 3.3.5 PTM mapping by polyamine-specific fragments 3.3.6 Identification of consensus motifs harboring lysine PTMs 4 Conclusions and Outlook 5.1 Synthesis of polyamine standards 5.2 Isolation of biosilica-associated proteins 5.3 Expression of tpSil3 from synthetic gene 5.4 HCl hydrolysis 5.5 AQC-derivatization of amino acids and polyamines 5.6 LC-MS/MS analysis of QAC-derivatives 5.7 Amino acid measurement using UV-detection 5.8 Direct infusion MS/MS analysis 5.9 Acetylation of phosphopolyamines 5.10 31P-NMR measurements 5.11 Deglycosylation with TFMS 5.12 Treatment with HF·pyridine soluble complex 5.13 Anhydrous HF-treatment 5.14 Protein analysis by GeLC-MS/MS 5.15 Proteomics data processing A Appendix B Bibliography Acknowledgments Publications Declaration / ErklĂ€rungDiatoms are eukaryotic unicellular algae that employ highly specialized proteins called silaffins for making nanopatterned silica-based cell walls. These proteins share little or no homology across diatom species and are extensively post-translationally modified. Apart from conventional modifications (e. g., phosphorylation and glycosylation) lysine residues of silaffins bear polyamine chains with highly heterogeneous molecular structure. The latter appear to be specific for silicifying organisms and therefore hypothesized to play a key role in biosilica synthesis. However, polyamine modifications of lysines, modified proteins, and modification sites remain poorly characterized. To address these questions, we developed a method to quantify polyamines and identify sites of polyamine modifications in proteins from phylogenetically closely related, yet morphologically distinct diatoms Thalassiosira pseudonana, T. oceanica, and Cyclotella cryptica. We demonstrated that the overall pattern of polyamines followed the phylogenetic proximity across these diatom species and showed that polyamine modifications occurred at consensus sites even in proteins showing no sequence similarity.:CONTENTS Summary Zusammenfassung List of figures List of tables Abbreviations 1 Introduction 1.1 Diatoms 1.2 Diatom biosilica 1.2.1 Biosilicification in nature 1.2.2 Diatom biosilica structure and cell cycle 1.2.3 The cell biology of biosilica morphogenesis 1.3 The role of polyamine PTMs in diatom biosilicification 1.3.1 Identifying biomolecules associated with diatom biosilica 1.3.2 PTM complexity of biosilica-associated proteins 1.3.3 Lysine Δ-polyamine PTMs in biosilica-associated proteins 1.4 Mass spectrometry in PTM discovery 1.4.1 Modification-specific proteomics 1.4.2 Analysis of polyamine-modified lysines by MS 1.4.3 Fractionation of proteins and peptides prior to MS 1.4.4 MS/MS analysis in modification-specific proteomics 1.4.5 Bioinformatics tools for modification-specific proteomics 1.5 Rationale of the thesis 2 Aim of the thesis 3 Results and discussion 3.1 A method for analysis of Δ-polyamine PTMs 3.1.1 Establishing a method to analyse Δ-polyamines 3.1.2 Method applicability for lysine PTM profiling 3.1.3 Profiling of lysine PTMs in silaffin-3 3.2 Profiling lysine PTMs in biosilica extracts 3.2.1 Lysine PTM profile and characteristic fragments 3.2.2 Elucidation of phosphopolyamine structures 3.2.3 LysinePTMprofilesofAFSMextracts 3.2.4 Comparison of AFIM and AFSM profiles in T. pseudonana 3.2.5 Phylogenetic relationship across three diatom species 3.3 PTM localization and discovery of consensus motifs 3.3.1 Multiple protease strategy for mapping lysine PTMs 3.3.2 Selection of deprotection technique 3.3.3 Mapping lysine PTMs on tpSil3 using iterative search strategy 3.3.4 Deconvolution of raw MS/MS spectra 3.3.5 PTM mapping by polyamine-specific fragments 3.3.6 Identification of consensus motifs harboring lysine PTMs 4 Conclusions and Outlook 5.1 Synthesis of polyamine standards 5.2 Isolation of biosilica-associated proteins 5.3 Expression of tpSil3 from synthetic gene 5.4 HCl hydrolysis 5.5 AQC-derivatization of amino acids and polyamines 5.6 LC-MS/MS analysis of QAC-derivatives 5.7 Amino acid measurement using UV-detection 5.8 Direct infusion MS/MS analysis 5.9 Acetylation of phosphopolyamines 5.10 31P-NMR measurements 5.11 Deglycosylation with TFMS 5.12 Treatment with HF·pyridine soluble complex 5.13 Anhydrous HF-treatment 5.14 Protein analysis by GeLC-MS/MS 5.15 Proteomics data processing A Appendix B Bibliography Acknowledgments Publications Declaration / ErklĂ€run

    Proteomics of diatoms: discovery of polyamine modifications in biosilica-associated proteins

    No full text
    Kieselalgen (Diatomee) sind eukaryotische einzellige Algen die hochspezifische Proteine (sogenannte Silaffine) erzeugen, um ‘nanopatterned’ Silica-ZellwĂ€nde herzustellen. Diese Proteine zeigen geringe oder gar keine Homologie innerhalb der Diatomeen Gattung und sind ausgiebig (extensiv) posttranslatorisch modifiziert. Zum Unterschied zu konventioneller Modifikation (z.B. Phosphorylierung und Glykosylierung) weisen Lysinreste von Silaffinen einige Polyaminketten mit sehr heterogenen molekularen Strukturen auf. Diese Modifikationen sind spezifisch fĂŒr Kieselalgen und spielen somit hypothetisch eine Rolle in der Biosilica-Synthese. Allerdings sind Lysin Polyamin Modifikationen, modifizierte Proteine und modifizierte Stellen kaum charakterisiert. Um diese Frage zu beantworten entwickelten wir eine Methode Polyamine zu quantifizieren und die Position von Polyamin-Modifikationen in engverwandte Proteine zu identifizieren (in morphologisch unterschiedliche Diatomeen Thalassiosira pseudonana, T. oceanica und Cyclotella cryptica). Wir zeigten, dass das Gesamtmuster von Polyaminender phylogenetischen NĂ€he dieser Kieselalgenarten folgt und dass diese Polyaminmodifikationen an Konsensusstellen sogar in Proteinen auftraten, die keine SequenzĂ€hnlichkeit zeigten.:CONTENTS Summary Zusammenfassung List of figures List of tables Abbreviations 1 Introduction 1.1 Diatoms 1.2 Diatom biosilica 1.2.1 Biosilicification in nature 1.2.2 Diatom biosilica structure and cell cycle 1.2.3 The cell biology of biosilica morphogenesis 1.3 The role of polyamine PTMs in diatom biosilicification 1.3.1 Identifying biomolecules associated with diatom biosilica 1.3.2 PTM complexity of biosilica-associated proteins 1.3.3 Lysine Δ-polyamine PTMs in biosilica-associated proteins 1.4 Mass spectrometry in PTM discovery 1.4.1 Modification-specific proteomics 1.4.2 Analysis of polyamine-modified lysines by MS 1.4.3 Fractionation of proteins and peptides prior to MS 1.4.4 MS/MS analysis in modification-specific proteomics 1.4.5 Bioinformatics tools for modification-specific proteomics 1.5 Rationale of the thesis 2 Aim of the thesis 3 Results and discussion 3.1 A method for analysis of Δ-polyamine PTMs 3.1.1 Establishing a method to analyse Δ-polyamines 3.1.2 Method applicability for lysine PTM profiling 3.1.3 Profiling of lysine PTMs in silaffin-3 3.2 Profiling lysine PTMs in biosilica extracts 3.2.1 Lysine PTM profile and characteristic fragments 3.2.2 Elucidation of phosphopolyamine structures 3.2.3 LysinePTMprofilesofAFSMextracts 3.2.4 Comparison of AFIM and AFSM profiles in T. pseudonana 3.2.5 Phylogenetic relationship across three diatom species 3.3 PTM localization and discovery of consensus motifs 3.3.1 Multiple protease strategy for mapping lysine PTMs 3.3.2 Selection of deprotection technique 3.3.3 Mapping lysine PTMs on tpSil3 using iterative search strategy 3.3.4 Deconvolution of raw MS/MS spectra 3.3.5 PTM mapping by polyamine-specific fragments 3.3.6 Identification of consensus motifs harboring lysine PTMs 4 Conclusions and Outlook 5.1 Synthesis of polyamine standards 5.2 Isolation of biosilica-associated proteins 5.3 Expression of tpSil3 from synthetic gene 5.4 HCl hydrolysis 5.5 AQC-derivatization of amino acids and polyamines 5.6 LC-MS/MS analysis of QAC-derivatives 5.7 Amino acid measurement using UV-detection 5.8 Direct infusion MS/MS analysis 5.9 Acetylation of phosphopolyamines 5.10 31P-NMR measurements 5.11 Deglycosylation with TFMS 5.12 Treatment with HF·pyridine soluble complex 5.13 Anhydrous HF-treatment 5.14 Protein analysis by GeLC-MS/MS 5.15 Proteomics data processing A Appendix B Bibliography Acknowledgments Publications Declaration / ErklĂ€rungDiatoms are eukaryotic unicellular algae that employ highly specialized proteins called silaffins for making nanopatterned silica-based cell walls. These proteins share little or no homology across diatom species and are extensively post-translationally modified. Apart from conventional modifications (e. g., phosphorylation and glycosylation) lysine residues of silaffins bear polyamine chains with highly heterogeneous molecular structure. The latter appear to be specific for silicifying organisms and therefore hypothesized to play a key role in biosilica synthesis. However, polyamine modifications of lysines, modified proteins, and modification sites remain poorly characterized. To address these questions, we developed a method to quantify polyamines and identify sites of polyamine modifications in proteins from phylogenetically closely related, yet morphologically distinct diatoms Thalassiosira pseudonana, T. oceanica, and Cyclotella cryptica. We demonstrated that the overall pattern of polyamines followed the phylogenetic proximity across these diatom species and showed that polyamine modifications occurred at consensus sites even in proteins showing no sequence similarity.:CONTENTS Summary Zusammenfassung List of figures List of tables Abbreviations 1 Introduction 1.1 Diatoms 1.2 Diatom biosilica 1.2.1 Biosilicification in nature 1.2.2 Diatom biosilica structure and cell cycle 1.2.3 The cell biology of biosilica morphogenesis 1.3 The role of polyamine PTMs in diatom biosilicification 1.3.1 Identifying biomolecules associated with diatom biosilica 1.3.2 PTM complexity of biosilica-associated proteins 1.3.3 Lysine Δ-polyamine PTMs in biosilica-associated proteins 1.4 Mass spectrometry in PTM discovery 1.4.1 Modification-specific proteomics 1.4.2 Analysis of polyamine-modified lysines by MS 1.4.3 Fractionation of proteins and peptides prior to MS 1.4.4 MS/MS analysis in modification-specific proteomics 1.4.5 Bioinformatics tools for modification-specific proteomics 1.5 Rationale of the thesis 2 Aim of the thesis 3 Results and discussion 3.1 A method for analysis of Δ-polyamine PTMs 3.1.1 Establishing a method to analyse Δ-polyamines 3.1.2 Method applicability for lysine PTM profiling 3.1.3 Profiling of lysine PTMs in silaffin-3 3.2 Profiling lysine PTMs in biosilica extracts 3.2.1 Lysine PTM profile and characteristic fragments 3.2.2 Elucidation of phosphopolyamine structures 3.2.3 LysinePTMprofilesofAFSMextracts 3.2.4 Comparison of AFIM and AFSM profiles in T. pseudonana 3.2.5 Phylogenetic relationship across three diatom species 3.3 PTM localization and discovery of consensus motifs 3.3.1 Multiple protease strategy for mapping lysine PTMs 3.3.2 Selection of deprotection technique 3.3.3 Mapping lysine PTMs on tpSil3 using iterative search strategy 3.3.4 Deconvolution of raw MS/MS spectra 3.3.5 PTM mapping by polyamine-specific fragments 3.3.6 Identification of consensus motifs harboring lysine PTMs 4 Conclusions and Outlook 5.1 Synthesis of polyamine standards 5.2 Isolation of biosilica-associated proteins 5.3 Expression of tpSil3 from synthetic gene 5.4 HCl hydrolysis 5.5 AQC-derivatization of amino acids and polyamines 5.6 LC-MS/MS analysis of QAC-derivatives 5.7 Amino acid measurement using UV-detection 5.8 Direct infusion MS/MS analysis 5.9 Acetylation of phosphopolyamines 5.10 31P-NMR measurements 5.11 Deglycosylation with TFMS 5.12 Treatment with HF·pyridine soluble complex 5.13 Anhydrous HF-treatment 5.14 Protein analysis by GeLC-MS/MS 5.15 Proteomics data processing A Appendix B Bibliography Acknowledgments Publications Declaration / ErklĂ€run

    Shedding light on silica biomineralization by comparative analysis of the silica-associated proteomes from three diatom species

    Get PDF
    Morphogenesis of the intricate patterns of diatom silica cell walls is a protein-guided process, yet to date only very few such silica biomineralization proteins have been identified. Therefore, it is currently unknown whether all diatoms share conserved proteins of a basal silica forming machinery, and whether unique proteins are responsible for the morphogenesis of species-specific silica patterns. To answer these questions, we extracted proteins from the silica of three diatom species (Thalassiosira pseudonana, Thalassiosira oceanica, and Cyclotella cryptica) by complete demineralization of the cell walls. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis of the extracts identified 92 proteins that we name ‘soluble silicome proteins’ (SSPs). Surprisingly, no SSPs are common to all three species, and most SSPs showed very low similarity to one another in sequence alignments. In-depth bioinformatics analyses revealed that SSPs could be grouped into distinct classes based on short unconventional sequence motifs whose functions are yet unknown. The results from the in vivo localization of selected SSPs indicates that proteins, which lack sequence homology but share unconventional sequence motifs may exert similar functions in the morphogenesis of the diatom silica cell wall
    corecore