495 research outputs found

    Compressive Inverse Scattering II. SISO Measurements with Born scatterers

    Full text link
    Inverse scattering methods capable of compressive imaging are proposed and analyzed. The methods employ randomly and repeatedly (multiple-shot) the single-input-single-output (SISO) measurements in which the probe frequencies, the incident and the sampling directions are related in a precise way and are capable of recovering exactly scatterers of sufficiently low sparsity. For point targets, various sampling techniques are proposed to transform the scattering matrix into the random Fourier matrix. The results for point targets are then extended to the case of localized extended targets by interpolating from grid points. In particular, an explicit error bound is derived for the piece-wise constant interpolation which is shown to be a practical way of discretizing localized extended targets and enabling the compressed sensing techniques. For distributed extended targets, the Littlewood-Paley basis is used in analysis. A specially designed sampling scheme then transforms the scattering matrix into a block-diagonal matrix with each block being the random Fourier matrix corresponding to one of the multiple dyadic scales of the extended target. In other words by the Littlewood-Paley basis and the proposed sampling scheme the different dyadic scales of the target are decoupled and therefore can be reconstructed scale-by-scale by the proposed method. Moreover, with probes of any single frequency \om the coefficients in the Littlewood-Paley expansion for scales up to \om/(2\pi) can be exactly recovered.Comment: Add a new section (Section 3) on localized extended target

    OEMC D2.5 Feasibility and Impact Assessment

    Get PDF
    This deliverable of the Open-Earth-Monitor project presents a feasibility analysis of the stakeholder needs for the project's 32 use-cases, in addition to an impact assessment and methods for measuring use-case impact

    POLRMT regulates the switch between replication primer formation and gene expression of mammalian mtDNA

    Get PDF
    Mitochondria are vital in providing cellular energy via their oxidative phosphorylation system, which requires the coordinated expression of genes encoded by both the nuclear and mitochondrial genomes (mtDNA). Transcription of the circular mammalian mtDNA depends on a single mitochondrial RNA polymerase (POLRMT). Although the transcription initiation process is well understood, it is debated whether POLRMT also serves as the primase for the initiation of mtDNA replication. In the nucleus, the RNA polymerases needed for gene expression have no such role. Conditional knockout of Polrmt in the heart results in severe mitochondrial dysfunction causing dilated cardiomyopathy in young mice. We further studied the molecular consequences of different expression levels of POLRMT and found that POLRMT is essential for primer synthesis to initiate mtDNA replication in vivo. Furthermore, transcription initiation for primer formation has priority over gene expression. Surprisingly, mitochondrial transcription factor A (TFAM) exists in an mtDNA-free pool in the Polrmt knockout mice. TFAM levels remain unchanged despite strong mtDNA depletion, and TFAM is thus protected from degradation of the AAA(+) Lon protease in the absence of POLRMT. Last, we report that mitochondrial transcription elongation factor may compensate for a partial depletion of POLRMT in heterozygous Polrmt knockout mice, indicating a direct regulatory role of this factor in transcription. In conclusion, we present in vivo evidence that POLRMT has a key regulatory role in the replication of mammalian mtDNA and is part of a transcriptional mechanism that provides a switch between primer formation for mtDNA replication and mitochondrial gene expression

    OEMC D2.1 Report "Stakeholder Committee and Open- Earth-Monitor Design" workshop

    Get PDF
    This deliverable of the Open-Earth-Monitor project describes the approach taken to compile and categorize the project's stakeholders, and provides recommendations for the future stakeholder interactions based on the results of a survey from the OEMC design workshop, which took place during the project's kick-off meeting in July, 2022

    Epidermolysa bullosa in Danish Hereford calves is caused by a deletion in LAMC2 gene

    Get PDF
    BACKGROUND Heritable forms of epidermolysis bullosa (EB) constitute a heterogeneous group of skin disorders of genetic aetiology that are characterised by skin and mucous membrane blistering and ulceration in response to even minor trauma. Here we report the occurrence of EB in three Danish Hereford cattle from one herd. RESULTS Two of the animals were necropsied and showed oral mucosal blistering, skin ulcerations and partly loss of horn on the claws. Lesions were histologically characterized by subepidermal blisters and ulcers. Analysis of the family tree indicated that inbreeding and the transmission of a single recessive mutation from a common ancestor could be causative. We performed whole genome sequencing of one affected calf and searched all coding DNA variants. Thereby, we detected a homozygous 2.4 kb deletion encompassing the first exon of the LAMC2 gene, encoding for laminin gamma 2 protein. This loss of function mutation completely removes the start codon of this gene and is therefore predicted to be completely disruptive. The deletion co-segregates with the EB phenotype in the family and absent in normal cattle of various breeds. Verifying the homozygous private variants present in candidate genes allowed us to quickly identify the causative mutation and contribute to the final diagnosis of junctional EB in Hereford cattle. CONCLUSIONS Our investigation confirms the known role of laminin gamma 2 in EB aetiology and shows the importance of whole genome sequencing in the analysis of rare diseases in livestock
    • 

    corecore