13 research outputs found

    DSA's subcarrier demodulation losses

    Get PDF
    The degradation in bit error rate performance due to imperfect subcarrier tracking by the Demodulation Synchronization Assembly (DSA) is investigated. Results apply to any type of digital loop and received signal dynamics. A type four loop causes the least amount of loss, because it tracks phase jerk with zero steady-state error. However, when frequency rate and frequency acceleration are as large as in the extended Magellan mission, it will be necessary to decrease the loop update time in order to minimize the losses

    Pointing a ground antenna at a spinning spacecraft using Conscan-simulation results

    Get PDF
    The results are presented for an investigation of ground antenna pointing errors which are caused by fluctuations of the receiver AGC signal due to thermal noise and a spinning spacecraft. Transient responses and steady-state errors and losses are estimated using models of the digital Conscan (conical scan) loop, the FFT, and antenna characteristics. Simulation results are given for the on-going Voyager mission and for the upcoming Galileo mission, which includes a spinning spacecraft. The simulation predicts a 1 sigma pointing error of 0.5 to 2.0 mdeg for Voyager, assuming an AGC loop SNR of 35 to 30 dB with a scan period varying from 128 to 32 sec, respectively. This prediction is in agreement with the DSS 14 antenna Conscan performance of 1.7 mdeg for 32 sec scans as reported in earlier studies. The simulation of Galileo predicts 1 mdeg error with a 128 sec scan and 4 mdeg with a 32 sec scan under similar AGC conditions

    QPSK loop lock detection in the advanced receiver

    Get PDF
    The Advanced Receiver (ARX 2) currently being developed uses a Costas crossover loop to acquire and track the phase of an incoming quadrature phase-shift-keyed (QPSK) signal. The performance is described for the QPSK lock detector to be implemented, taking into account the phase jitter in the tracking loop. Simulations are used to verify the results of the analysis

    Costas loop lock detection in the advanced receiver

    Get PDF
    The advanced receiver currently being developed uses a Costas digital loop to demodulate the subcarrier. Previous analyses of lock detector algorithms for Costas loops have ignored the effects of the inherent correlation between the samples of the phase-error process. Accounting for this correlation is necessary to achieve the desired lock-detection probability for a given false-alarm rate. Both analysis and simulations are used to quantify the effects of phase correlation on lock detection for the square-law and the absolute-value type detectors. Results are obtained which depict the lock-detection probability as a function of loop signal-to-noise ratio for a given false-alarm rate. The mathematical model and computer simulation show that the square-law detector experiences less degradation due to phase jitter than the absolute-value detector and that the degradation in detector signal-to-noise ratio is more pronounced for square-wave than for sine-wave signals

    Overview of arraying techniques in the deep space network

    Get PDF
    Four different arraying schemes that can be used by the Deep Space Network are functionally discussed and compared. These include symbol stream combining (SSC), baseband combining (BC), carrier arraying (CA), and full spectrum combining (FSC). In addition, sibeband aiding (SA) is also included and compared even though it is not an arraying scheme, since it uses a single antenna. Moreover, combinations of these schemes are discussed, such as carrier arraying with sideband aiding and baseband combining (CA/SA/BC) or carrier arraying with symbol stream combining (CA/SSC). Complexity versus performance is traded off and the benefits to the reception of existing spacecraft signals are discussed. Recommendations are made as to the best techniques for particular configurations

    Steady-state probability density function of the phase error for a DPLL with an integrate-and-dump device

    Get PDF
    The steady-state behavior of a particular type of digital phase-locked loop (DPLL) with an integrate-and-dump circuit following the phase detector is characterized in terms of the probability density function (pdf) of the phase error in the loop. Although the loop is entirely digital from an implementation standpoint, it operates at two extremely different sampling rates. In particular, the combination of a phase detector and an integrate-and-dump circuit operates at a very high rate whereas the loop update rate is very slow by comparison. Because of this dichotomy, the loop can be analyzed by hybrid analog/digital (s/z domain) techniques. The loop is modeled in such a general fashion that previous analyses of the Real-Time Combiner (RTC), Subcarrier Demodulator Assembly (SDA), and Symbol Synchronization Assembly (SSA) fall out as special cases

    Real-time combiner loss

    Get PDF
    Telemetry signals from several channels are aligned in time and combined by the Real-Time Combiner (RTC) in order to increase the strength of the total signal. In this article, the impact of the timing jitter in the RTC on the bit/symbol error rate is investigated. Equations are derived for the timing jitter loss associated with the coded and uncoded channels. Included are curves that depict the bit-symbol error rate vs. E sub b/N sub 0 and E sub s/N sub 0 for some typical telemetry conditions. The losses are typically below 0.1 dB

    Performance analysis of the DSN baseband assembly (Bba) Real-Time Combiner (RTC)

    Get PDF
    The operation of the BBA Real Time Combiner (RTC) is discussed and its performance investigated in detail. It is shown that each channel of the RTC can be modelled by a simple block diagram in the z-transform domain from which all pertinent transient and steady state behavioral characteristics can be determined. In particular, the characteristic equation of the tracking loop and its equivalent noise bandwidth are found and used to evaluate the closed loop transient response and steady-state mean squared timing jitter. The impact of the totality of these loop jitter contributions on the combiner output SNR is evaluated and illustrated numerically. These results show that for parameters of interest to various space missions, the RTC is capable of providing significant SNR improvement relative to a single receiving antenna

    A Ka-band (32 GHz) beacon link experiment (KABLE) with Mars Observer

    Get PDF
    A proposal for a Ka-Band (32 GHz) Link Experiment (KABLE) with the Mars Observer mission was submitted to NASA. The experiment will rely on the fourth harmonic of the spacecraft X-band transmitter to generate a 33.6 GHz signal. The experiment will rely also on the Deep Space Network (DSN) receiving station equipped to simultaneously receive X- and Ka-band signals. The experiment will accurately measure the spacecraft-to-Earth telecommunication link performance at Ka-band and X-band (8.4 GHz)

    Effects of low sampling rate in the digital data-transition tracking loop

    Get PDF
    This article describes the performance of the all-digital data-transition tracking loop (DTTL) with coherent and noncoherent sampling using nonlinear theory. The effects of few samples per symbol and of noncommensurate sampling and symbol rates are addressed and analyzed. Their impact on the probability density and variance of the phase error are quantified through computer simulations. It is shown that the performance of the all-digital DTTL approaches its analog counterpart when the sampling and symbol rates are noncommensurate (i.e., the number of samples per symbol is an irrational number). The loop signal-to-noise ratio (SNR) (inverse of phase error variance) degrades when the number of samples per symbol is an odd integer but degrades even further for even integers
    corecore