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Abstract

The steady-state behavior of a particular type of digital phase-locked

loop (DPLL) with integrate-and-dump circuit following the phase detector is

characterized in terms of the probability density function (pdf) of the phase

error in the loop. Although the loop is entirely digital from an implementa-

tion standpoint, it operates at two extremely different sampling rates. In

particular, the combination of a phase detector and an integrate-and-dump

circuit operates at a very high rate whereas the loop update rate is very slow

by comparison. Because of this dichotomy, the loop can be analyzed by hybrid

analog/digital (s/z domain) techniques. The loop is modeled in such a general

fashion that previous analyses of the Real-Time Combiner (RTC), Subcarrier

Demodulator Assembly (SDA), and Symbol Synchronization Assembly (SSA) fall out

as special cases.
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I. INTRODUCTION

The purpose of this analysis is to derive the steady state probability

density function (pdf) of the phase error in a digital phase-locked loop

(DPLL). The loop considered in this analysis has an integrate-and-dump device

after the phase detector. This device together with the phase detector

operates at a much higher rate than the rest of the loop, which makes it

possible (or imperative) to model this part of the digital loop as an analog

device. In previous analyses, Refs. 1, 2, and 3, each component of the loop

was modeled either in the s or the z domain, which gave a hybrid s/z loop

model. The resulting open and closed loop transfer functions related

integrated phase error to the integrated input phase process.

In the present analysis, difference equations are directly written for

the different components of the loop. These difference equations are combined

in order to have an overall mathematical model of the loop in the presence of

noise. It is shown that essentially the same open/closed loop transfer func-

tions are obtained as in the previous analyses. The main difference is that

now the transfer functions relate the phase error to the input phase process.

This fact permits the derivation of the steady-state pdf of the phase error.

A method is given to transform high-order nonlinear stochastic difference

equations. It is shown how this analysis applies to the existing digital

phase-locked loops, namely to the Real-Time Combiner (RTC), the Subcarrier

Demodulator (SD), and the Symbol Synchronization (SS) digital loops in the

Baseband Assembly (BBA).

II. DISCUSSION

The phase-locked loop analyzed in this article, although totally digital,

is in a sense a hybrid type because it operates at two extremely different

rates. The phase detector and the integrate-and-dump circuit shown in Fig. 1

operate at a very high rate (many millions of samples per second), while the

loop update rate is slow (typically, one update period is longer than a

second). Because of the very high rate at which the phase detector operates,

the input phase, 9(t), as well as the reference phase 9(t) are modeled as

continuous variables. Their difference is the instantaneous loop phase error,

namely,



INPUT PHASE
SIGNAL DETECTOR
+ NOISE

Fig. 1. Main components of a digital phase-locked loop (DPLL)

A= 0(t) - e(t) (i)

In general, the phase detector is a nonlinear device: It transforms <j»(t) to

f(<£(t)). Two cases are most frequently considered:

f(4>(t)) = sin <j)(t) (2a)

when tracking a sinuousoidal signal and

(2b)
i=0

when tracking a square wave.

A typical phase error process is shown in Fig. 2. In the time interval

(t,, t, ..), both 4>(t) and f((j>(t)) are assumed to be monotonic functions of time.
1C K T 1.

Because of this assumption, there is a particular instant, t + At , in
1C K

the interval (t , t .. ) when the following condition is met:

"k+1
f(4>(tk + Atk)) = | / f(()>(t))dt

t.

T = t - t1 k+1 Ck

(3a)



"(b)
CARRIER/SUBCARRIER
TRACKING LOOP

k+1 Vl

t

Figure 2. Input/output phase processes

i.e., when f(<J>(t)) passes through its average value. In our analysis, T is

the loop update time which is assumed to be a constant. Solving Eq. (3a), we

define the new variable

k+1
f(<t>(t))dt (3b)

We now replace the actual phase error process, <j>(t), by a staircase process

<|> which satisfies Eq. (3b) and which is constant during one loop update
K
interval. With the above substitution, Eq. (1) now becomes

Ae. - e,
k k

(4)



where 9, is the value of 9(t) at time t + At, and 9. is the solution of

the difference equation to be developed.

In Fig. 1, the integrate-and-dump circuit integrates the output of the

phase detector over an update interval producing e, , which we call the
1C

error signal. Because of the additive noise in the input signal, e, is a

random variable. The input-output relation of the integrate-and-dump device

can be expressed by the following equation:

Efc = GQf(+fc) + nk (5)

where G is the gain of the integrate-and-dump device defined as follows:

A E{Gk>
GQ = f(*k)

 (6)

The numerator, E{e, }, is the expected value of e. , and <j>, is defined by

Eq. (3b). The noise sample n is modeled as a sequence of independent

Gaussian random variables with zero mean and variance a 2. Table 1 gives
2

expressions of G and o for various digital phase-locked loops in use at

the Jet Propulsion Laboratory (JPL).

In order to find the pdf of the phase error at the loop update instants,

we need the set of difference equations that describes the operation of the

loop. In general, between the integrate-and-dump device where the error

signal, c, , is sampled and the digitally controlled oscillator (DCO) or
K A

some other control device which .produces the phase estimate 9(t), there is a

digital filter which can be described by the following difference equation:

ykD(z) = ekN(z) (7)

where

D(z) = 1 - aiz~l - ... - anz~n, (8)

N(z) = bo + b^z"1 + ... + broz~m, m < n (9)
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and z is the unit delay operator defined as z e, = e, _.. Equation (7)

can also be written as

«•>«* (10)

where F(z) is defined as the loop filter transfer function.

If D(z) has N integrators, then Eq. (8) can be written as

D(z) = (1 - z~1)N(l - â z"1 - ... - an_N'z'
n+N) (11)

The mathematical form of the difference equation for the control device in the

feedback path will depend on the particular loop we are dealing with. If, for

example, the loop tracks the epoch or the relative delay of a signal, as is

the case with the RTC, then in the feedback path we have a summer, and y, in

Fig. 3 will be the increment in epoch (or in relative time delay). For this

case, the input-output relationship of the control device will be described by

the equation

z

k . i (1 - z'1) k (1 - z'1) k
l=-oo

On the other hand, if the loop tracks the phase of the incoming signal with a

DCO (carrier or subcarrier tracking loop), then y, of Fig. 2 will be the

frequency of the DCO. Since the phase is the integral of frequency, we can

approximate the integral operation by the bilinear transformation (or the trap-

ezoidal rule), namely,

A T (1 + z ̂ z-1 C2(z) ,10,9 = -^ - ^— y = - — y (13)
K 2 (1 - z L) K (1 - z L) *

Combining Eqs. (5), (10) and (12) or (13) in Eq. (4), the difference equation

which describes

tained, namely,

which describes the operation of the loop at the instants t + At is ob-
1C iC



Fig. 3. Equivalent block diagram of a DPLL

<|>k = 9k - C . ( z ) F ( z ) ( G Q f ( < j > k ) + nk) /( l - z'1), j = 1 or 2 (14)

The input phase, 9(t), at discrete time instants t = kT can be modeled as

being of the form

ek = e2(ki) (15)

where 9., i = 0, 1, 2, ...,M are constants.

The following fact will be useful in our analysis;

9M(kT)
M(l -

0 for M < N

Mig-.!1^ for M = N
M

unbounded otherwise

(16)

After these preliminary steps, we are finally ready to write the overall

nonlinear stochastic difference equation for the digital phase-locked loop.

Using Eq. (10) in Eq. (14) and rearranging terms, we obtain



- z )D(z) = 9k(l - z

with

J =

- C..(z)N(z)(GQf(<fk)

1 for an epoch tracking loop and

2 for a carrier tracking loop

(17)

Assuming that D(z) has N integrators as in Eq. (11) and that 9 is of the

form given by Eq. (15) with M = N + 1 (finite steady state error), the above

difference equation becomes

n+1 n-N
T* / t \ t *- ^

I c(i)(j> z = u 2,
i=0 i=0

K

B(i)z
_1

-i

K
Y(i)f(4»k)z

(18)

where

and

K =
m + 1 for the epoch tracking loop

m + 2 for the carrier tracking loop
(19)

u (20)

Again m and n are the number of delays in the loop filter as defined by Eqs.

(8) and (9), and M is the highest component of <|> tracked by the loop with

finite steady state error. Note that c(0) = B(0) = 1.

The above stochastic difference equation is not Markov for n larger than

zero. However, it can easily be reduced to a set of first-order stochastic

difference equations, resulting in a vector Markov difference equation. This

reduction can be accomplished by several methods. Expanding the above

difference equation and regrouping terms, we obtain



4>k = u

-l
- c(l)4»k - - d(l)nk]

z~2[B(2)u - c(2)<|>k - Y(2)f(4>k) - d(2)nk]

z~n~L[13(n - c(n - d(n + l)nfc] (21)

(Note that I3(i) are zero for i larger than n - N, and y(i) an<* d(i) are zero

for i larger than K. )

Representing Eq. (21) in the First Canonical Form, the flow diagram of

Fig. 4 is obtained with the following output equation

(22)

and the nonlinear state equation

Xk+1(l)
Xk+1(2)

Xk+1(n)

-c(l)
-c(2)

c(n)
c(n + 1)

Y(U
Y(2)

1 0
0 1
0 0

0 0
0 0

Y(n H

B(l)
B(2)

c(l)
c(2)

B(n) - c(n)
0 - c(n + 1) .

u -

0
0
0

1
0

f(Xk(l) + u)

d(l)
d(2)

d(n)
. 0

Xk(l)
Xk(2)

Xk(n)
Xk(n + 1)

(23a)



nk (NOISE)

PHASE DETECTOR
NONLINEARITY

Fig. 4. First canonical form representation of the DPLL difference equation

In vector notation Eq. (23a) can be written as

u) + Bu - (23b)

The above state equation simplifies considerably when the phase detector can

be modeled as a linear device with f(<t>k) = 4>k*
 In tnis case, Eq. (18)

reduces to

n+1 . n-N K _
I <x(i)<|>. z~l = u I e(i)z~L - I d(i)n z
1=0 1=0 1=1

where

a(i) = c(i) - yd)

10

(24b)



If + 1 \ ••• /
/-/»-\- — -

k+l(2>

Xk + 1(n).
_Xk+ l(n H- 1)

-o
-o

-a
-<x

v

.(1) 1 C
(2) 0~ 1

0 0

(n) 0 0
(n + 1) 0 0

B(l) - a(l)
B(2) - a(2)

•

B(n) - a(n)
0 - a(n + 1).

...
* • •

u -

0
0
0

1
0 _

'd(l)"
d(2)

•

d(n)
. o .

X k ( l )

*

Xk(n)
Xk(n + 1)_

nk (25a)

Using vector notation we can write Eq. (25a)

X. ,
-k+1

+ Bu - (25b)

where A is an (n + 1) x (n + 1) matrix. The values of the constants {a.},

{6.}, and {d.} corresponding to the RTC and the subcarrier loop are given

in Table 2.

A. Chapman-Kolmogorov Equation

The vector Markov process for a nonlinear phase detector is given by

Eq. (23) and for a linear phase detector by Eq. (26). The conditional proba

bility density function (pdf) of X. 1 , conditioned on the initial condition

X> satisfies the Chapman-Kolmogorov (C-K) equation

where

x_ = initial value of X-0 —

(26)

q , (X,.

|XQ) = pdf of X^ given XQ

= w) = transition pdf of }C given 5C = w

11



Table 2. Value of constants for the linear state Eq. (24)

Constants RTC Subcarrier and Symbol Synchronization
Loops

ax AGq - 1 - B TAGq/2 - C - 2

<x2 B 2C + 1 + TGq(A + B)/2

a3 2D - C + TGqB/2

at. -D

B0

B2

JJ3

d2

d3

1

-B

0

—

•A

0

1

-C

-D

0

0

-TA/2

-T(A + B) /2

-TB/2

0

12



-Now--the- transition_pdfL_q, (_?)_• )._.can b_e_ written__as_

qk iVi./1' =
IV R. * J.

qk[Xk+1(L) = x(L) Xk+1(L - 1) = x(L - 1) X
k+i(l) = x(1)« 21k

 = *]

X qk[Xk+l(L ~ 1} = X(L ' 1)IX^(L ~ 2) = x(L - 2)'

where L = n + 1 .

In words, Eq. (27) expresses the total transition pdf as a product of

transition pdf s at the input to each delay of Fig. 4. If we refer to that

figure and assume Gaussian distribution of the noise samples n , these

transition pdf's will have Gaussian distributions for d(i) ^ 0 and will be

delta functions for d(i) = 0, i = 1, ..., n + 1. The pdf's with Gaussian

distribution will have the following conditional mean and variance

E{Xk+1(i)|Xk+1(i - 1) = x(i - 1), .... xk+1(l) = x(l), ^ = w} = u.

u) + w(i + 1) +(B(i)-c(i) )u

(28)

0 O O
a. = d(i)a (29)
1 n

and the delta functions will be of the form

6[Xk+1(i) - u.] (30)

where \i. is given by Eq. (28).

13



Note in Eqs. (28), (29), and (30) that the transition pdf qfc (•(•)

(Eq. [27]) will be independent of k. This should be expected since we are

analyzing a time-invariant system. For simplicity of notation, we shall define

qk(j) = qk[Xlc-H(j)|Xk-H(j~1) = ̂ J'1^ •••• \+l(l) = x(1)* ^k = ̂ ]

j = L, L-l, ..., 1 (31)

The transition pdf of Eq. (27) now can be written as

\(\+l = 51^ = & = .^ \(^ (32)

The C-K equation for an arbitrary nonlinearity f(») is given by Eq. (26).

When f(«) is periodic, as in Eq. (2), then the pdf of the unrestricted phase

error process p, 1 (X, , = x|X = w) will go to zero as k •» °°, which is not

particularly useful for loop analysis. However, the modulo 2tr reduction of

the random variable X, is of interest in studying the behavior of the loop in

the locked condition. We define a new random variable X, '(j) e(-ir, ir)

which is obtained from the old random variable X(j) by taking

mod 2w» J = 1.2,..., L (33)

Using Eqs. (26) and (32), the corresponding C-K equation that applies to the

mod 2tr process {X'} is modified to be

-ff -IT J = l

where all the variables are now e(-ir, ir). The transition pdf's,

of Eq. (31), will have to be modified now as follows:

14



m=-°°

= x(j-l), ..., X. . ' = x(l), X, ' = w] (35)

In solving the C-K equation as expressed by Eq. (34) in the steady state,

i.e., k -» °°, we know that p ,(*) on the left hand side will be equal to

p, (•) on the right hand side. The dependence of distribution ?,(•) on
K K

x_, the initial value of the state vector, can be dropped for large k.

In order to conclude our discussion, we will show a method of solving the

C-K equation for the first-order loop, i.e., when L = (n + 1) = 1 (no loop

filter). In this case the transition pdf will have only one term with

Gaussian distribution, namely,

'l V =w)

(36)

I 2
2iro m=-°°

6Xp
T_ {(X'+2irm) - (-cw - yf(w+u)-cu)}2

2
L 20 J

Note that we have dropped the index 1 from all the variables and constants in

order to simplify our notation.

The C-K equation for this first-order loop in the steady state will be

ir CO

p(X' = x) = -7== / I exp
2iro -ir m=-°°

2
{(X'+2irm) - (-cw - vf(w+u)-cu)} ,., x .— p(.X = w; dw,

2a

X' e (-IT, IT) (37)

We now approximate integration with summation. The continuous variables X' and

w are converted to discrete variables taking values x. and w. in the

interval (-ir, ir), namely,

x. = i(ir/N), w. = i(ir/N), i = -N,-N+1, ..., N (39)

where N is an integer large enough to make the above approximation valid.

15



With these changes, the discrete C-K equation becomes

N
p(X' = x.) = I q..p(X' = w.) (40)

1 j=-N 1J J

where

q
m=-ao

00 |~ {(x.+2irm) - (-cw. - yf(w.+u)-cu)} I
1 exp - i 1— J (41)

L 2a J

Let Q be the (2N + 1) x (2N +1) matrix with elements q. . defined by Eq.

(41), and let P be the (2N + 1) vector with elements x. and w. . Then the

discrete C-K equation in vector notation will be

P = QP (42)

Using the definition of eigenvalues, we recognize that Eq. (42) can be

written as

(XI - Q)P = 0 (43)

where X is an eigenvalue of Q and I is a (2N+ l)x (2N + 1) identity matrix.

The C-K discrete equation will have a solution if one of the eigenvalues of Q

will be 1. In this case, the desired discrete pdf of the phase error P will

be the eigenvector corresponding to X = 1 .

B. A Numerical Example

The modulo 2ir steady-state pdf of the phase error process was

numerically computed for a first order loop having a summer as the control

device and a filter with F(z) = A. It was assumed that the loop tracks a

square wave which results in the sawtooth nonlinearity given by Eq. (2).

These assumptions result in the following nonlinear stochastic difference

equation:

(44)

16



-The elements q̂ .-of the-matrix Q -defined-by Eq. -(42) are -normalized- as

follows

qi.ir/(2N + 1) for i = 1 and (2N + 1)

q. .2ir/(2N + 1) otherwise •

where q.. are computed using Eq. (41). This normalization makes the sum of

the elements q..' along each column of Q' equal to 1.0 which in turn makes

the largest eigenvalue of Q', X , equal to 1.0 and the desired, discrete

pdf, P, is obtained. In our numerical evaluation of P, the following assump-

tions were made:

GQ = 1.0

0.01 < A < 1.0

u = 0.0 (no loop stress)

0.01 < o2 < 1.0

Figures 5, 6, and 7 summarize the numerical results. In these figures the

pdfs of the modulo 2ir process of the phase error are compared with a

Gaussian pdf of the same mean and variance values.

III. Conclusions

Using a method based on transforming high-order nonlinear stochastic

difference equations to a set of first-order nonlinear difference equations,

the steady-state probability density function of a digital phase-locked loop

with integrate-and-dump circuit following the phase detector has been derived.

This work ties together in a unified fashion, the previous analyses of specific

DSN Baseband Assembly (BBA) loops such as the Real-Time Combiner (RTC), Sub-

carrier Demodulation Assembly (SDA), and Symbol Synchronization Assembly (SSA).

A numerical example for a first-order loop having a summer as a control device

and a constant loop filter was given to illustrate the simplicity of the appli-

cation of the theory. It is believed that the results derived here are suffi-

ciently general so as to apply to a host of other loops of this generic type.

17
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Fig. 5. Modulo 2ir steady-state pdf of the phase error. First order loop.

Loop gain GqA =0.01.
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Fig. 6. Modulo 2ir steady-state pdf of the phase error.
Loop gain GqA = 0.1.

First order loop.
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Fig. 7. Modulo 2ir steady-state pdf of the phase error.
Loop gain GgA = 1.0.

First order loop.
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