146 research outputs found

    Dragging a polymer chain into a nanotube and subsequent release

    Full text link
    We present a scaling theory and Monte Carlo (MC) simulation results for a flexible polymer chain slowly dragged by one end into a nanotube. We also describe the situation when the completely confined chain is released and gradually leaves the tube. MC simulations were performed for a self-avoiding lattice model with a biased chain growth algorithm, the pruned-enriched Rosenbluth method. The nanotube is a long channel opened at one end and its diameter DD is much smaller than the size of the polymer coil in solution. We analyze the following characteristics as functions of the chain end position xx inside the tube: the free energy of confinement, the average end-to-end distance, the average number of imprisoned monomers, and the average stretching of the confined part of the chain for various values of DD and for the number of monomers in the chain, NN. We show that when the chain end is dragged by a certain critical distance xx^* into the tube, the polymer undergoes a first-order phase transition whereby the remaining free tail is abruptly sucked into the tube. This is accompanied by jumps in the average size, the number of imprisoned segments, and in the average stretching parameter. The critical distance scales as xND11/νx^*\sim ND^{1-1/\nu}. The transition takes place when approximately 3/4 of the chain units are dragged into the tube. The theory presented is based on constructing the Landau free energy as a function of an order parameter that provides a complete description of equilibrium and metastable states. We argue that if the trapped chain is released with all monomers allowed to fluctuate, the reverse process in which the chain leaves the confinement occurs smoothly without any jumps. Finally, we apply the theory to estimate the lifetime of confined DNA in metastable states in nanotubes.Comment: 13pages, 14figure

    Screening by symmetry of long-range hydrodynamic interactions of polymers confined in sheets

    Full text link
    Hydrodynamic forces may significantly affect the motion of polymers. In sheet-like cavities, such as the cell's cytoplasm and microfluidic channels, the hydrodynamic forces are long-range. It is therefore expected that that hydrodynamic interactions will dominate the motion of polymers in sheets and will be manifested by Zimm-like scaling. Quite the opposite, we note here that although the hydrodynamic forces are long-range their overall effect on the motion of polymers vanishes due to the symmetry of the two-dimensional flow. As a result, the predicted scaling of experimental observables such as the diffusion coefficient or the rotational diffusion time is Rouse-like, in accord with recent experiments. The effective screening validates the use of the non-interacting blobs picture for polymers confined in a sheet.Comment: http://www.weizmann.ac.il/complex/tlusty/papers/Macromolecules2006.pdf http://pubs.acs.org/doi/abs/10.1021/ma060251

    Application of Multicanonical Multigrid Monte Carlo Method to the Two-Dimensional ϕ4\phi^4-Model: Autocorrelations and Interface Tension

    Get PDF
    We discuss the recently proposed multicanonical multigrid Monte Carlo method and apply it to the scalar ϕ4\phi^4-model on a square lattice. To investigate the performance of the new algorithm at the field-driven first-order phase transitions between the two ordered phases we carefully analyze the autocorrelations of the Monte Carlo process. Compared with standard multicanonical simulations a real-time improvement of about one order of magnitude is established. The interface tension between the two ordered phases is extracted from high-statistics histograms of the magnetization applying histogram reweighting techniques.Comment: 49 pp. Latex incl. 14 figures (Fig.7 not included, sorry) as uuencoded compressed tar fil

    Speckle from phase ordering systems

    Full text link
    The statistical properties of coherent radiation scattered from phase-ordering materials are studied in detail using large-scale computer simulations and analytic arguments. Specifically, we consider a two-dimensional model with a nonconserved, scalar order parameter (Model A), quenched through an order-disorder transition into the two-phase regime. For such systems it is well established that the standard scaling hypothesis applies, consequently the average scattering intensity at wavevector _k and time t' is proportional to a scaling function which depends only on a rescaled time, t ~ |_k|^2 t'. We find that the simulated intensities are exponentially distributed, with the time-dependent average well approximated using a scaling function due to Ohta, Jasnow, and Kawasaki. Considering fluctuations around the average behavior, we find that the covariance of the scattering intensity for a single wavevector at two different times is proportional to a scaling function with natural variables mt = |t_1 - t_2| and pt = (t_1 + t_2)/2. In the asymptotic large-pt limit this scaling function depends only on z = mt / pt^(1/2). For small values of z, the scaling function is quadratic, corresponding to highly persistent behavior of the intensity fluctuations. We empirically establish a connection between the intensity covariance and the two-time, two-point correlation function of the order parameter. This connection allows sensitive testing, either experimental or numerical, of existing theories for two-time correlations in systems undergoing order-disorder phase transitions. Comparison between theory and our numerical results requires no adjustable parameters.Comment: 18 pgs RevTeX, to appear in PR

    Domain Growth and Finite-Size-Scaling in the Kinetic Ising Model

    Full text link
    This paper describes the application of finite-size scaling concepts to domain growth in systems with a non-conserved order parameter. A finite-size scaling ansatz for the time-dependent order parameter distribution function is proposed, and tested with extensive Monte-Carlo simulations of domain growth in the 2-D spin-flip kinetic Ising model. The scaling properties of the distribution functions serve to elucidate the configurational self-similarity that underlies the dynamic scaling picture. Moreover, it is demonstrated that the application of finite-size-scaling techniques facilitates the accurate determination of the bulk growth exponent even in the presence of strong finite-size effects, the scale and character of which are graphically exposed by the order parameter distribution function. In addition it is found that one commonly used measure of domain size--the scaled second moment of the magnetisation distribution--belies the full extent of these finite-size effects.Comment: 13 pages, Latex. Figures available on request. Rep #9401

    Phonon Localization in One-Dimensional Quasiperiodic Chains

    Full text link
    Quasiperiodic long range order is intermediate between spatial periodicity and disorder, and the excitations in 1D quasiperiodic systems are believed to be transitional between extended and localized. These ideas are tested with a numerical analysis of two incommensurate 1D elastic chains: Frenkel-Kontorova (FK) and Lennard-Jones (LJ). The ground state configurations and the eigenfrequencies and eigenfunctions for harmonic excitations are determined. Aubry's "transition by breaking the analyticity" is observed in the ground state of each model, but the behavior of the excitations is qualitatively different. Phonon localization is observed for some modes in the LJ chain on both sides of the transition. The localization phenomenon apparently is decoupled from the distribution of eigenfrequencies since the spectrum changes from continuous to Cantor-set-like when the interaction parameters are varied to cross the analyticity--breaking transition. The eigenfunctions of the FK chain satisfy the "quasi-Bloch" theorem below the transition, but not above it, while only a subset of the eigenfunctions of the LJ chain satisfy the theorem.Comment: This is a revised version to appear in Physical Review B; includes additional and necessary clarifications and comments. 7 pages; requires revtex.sty v3.0, epsf.sty; includes 6 EPS figures. Postscript version also available at http://lifshitz.physics.wisc.edu/www/koltenbah/koltenbah_homepage.htm

    Thermal Degradation of Adsorbed Bottle-Brush Macromolecules: Molecular Dynamics Simulation

    Full text link
    The scission kinetics of bottle-brush molecules in solution and on an adhesive substrate is modeled by means of Molecular Dynamics simulation with Langevin thermostat. Our macromolecules comprise a long flexible polymer backbone with LL segments, consisting of breakable bonds, along with two side chains of length NN, tethered to each segment of the backbone. In agreement with recent experiments and theoretical predictions, we find that bond cleavage is significantly enhanced on a strongly attractive substrate even though the chemical nature of the bonds remains thereby unchanged. We find that the mean bond life time decreases upon adsorption by more than an order of magnitude even for brush molecules with comparatively short side chains $N=1 \div 4$. The distribution of scission probability along the bonds of the backbone is found to be rather sensitive regarding the interplay between length and grafting density of side chains. The life time declines with growing contour length LL as L0.17\propto L^{-0.17}, and with side chain length as N0.53\propto N^{-0.53}. The probability distribution of fragment lengths at different times agrees well with experimental observations. The variation of the mean length L(t)L(t) of the fragments with elapsed time confirms the notion of the thermal degradation process as a first order reaction.Comment: 15 pages, 7 figure

    Early Stages of Homopolymer Collapse

    Full text link
    Interest in the protein folding problem has motivated a wide range of theoretical and experimental studies of the kinetics of the collapse of flexible homopolymers. In this Paper a phenomenological model is proposed for the kinetics of the early stages of homopolymer collapse following a quench from temperatures above to below the theta temperature. In the first stage, nascent droplets of the dense phase are formed, with little effect on the configurations of the bridges that join them. The droplets then grow by accreting monomers from the bridges, thus causing the bridges to stretch. During these two stages the overall dimensions of the chain decrease only weakly. Further growth of the droplets is accomplished by the shortening of the bridges, which causes the shrinking of the overall dimensions of the chain. The characteristic times of the three stages respectively scale as the zeroth, 1/5 and 6/5 power of the the degree of polymerization of the chain.Comment: 11 pages, 3 figure

    A review of Monte Carlo simulations of polymers with PERM

    Full text link
    In this review, we describe applications of the pruned-enriched Rosenbluth method (PERM), a sequential Monte Carlo algorithm with resampling, to various problems in polymer physics. PERM produces samples according to any given prescribed weight distribution, by growing configurations step by step with controlled bias, and correcting "bad" configurations by "population control". The latter is implemented, in contrast to other population based algorithms like e.g. genetic algorithms, by depth-first recursion which avoids storing all members of the population at the same time in computer memory. The problems we discuss all concern single polymers (with one exception), but under various conditions: Homopolymers in good solvents and at the Θ\Theta point, semi-stiff polymers, polymers in confining geometries, stretched polymers undergoing a forced globule-linear transition, star polymers, bottle brushes, lattice animals as a model for randomly branched polymers, DNA melting, and finally -- as the only system at low temperatures, lattice heteropolymers as simple models for protein folding. PERM is for some of these problems the method of choice, but it can also fail. We discuss how to recognize when a result is reliable, and we discuss also some types of bias that can be crucial in guiding the growth into the right directions.Comment: 29 pages, 26 figures, to be published in J. Stat. Phys. (2011
    corecore