1,861 research outputs found

    Decoherence and fidelity in ion traps with fluctuating trap parameters

    Get PDF
    We consider two different kinds of fluctuations in an ion trap potential: external fluctuating electrical fields, which cause statistical movement (``wobbling'') of the ion relative to the center of the trap, and fluctuations of the spring constant, which are due to fluctuations of the ac-component of the potential applied in the Paul trap for ions. We write down master equations for both cases and, averaging out the noise, obtain expressions for the heating of the ion. We compare our results to previous results for far-off resonance optical traps and heating in ion traps. The effect of fluctuating external electrical fields for a quantum gate operation (controlled-NOT) is determined and the fidelity for that operation derived.Comment: 11 pages, 4 figure

    Entanglement in the Dicke model

    Get PDF
    We show how an ion trap, configured for the coherent manipulation of external and internal quantum states, can be used to simulate the irreversible dynamics of a collective angular momentum model known as the Dicke model. In the special case of two ions, we show that entanglement is created in the coherently driven steady state with linear driving. For the case of more than two ions we calculate the entanglement between two ions in the steady state of the Dicke model by tracing over all the other ions. The entanglement in the steady state is a maximum for the parameter values corresponding roughly to a bifurcation of a fixed point in the corresponding semiclassical dynamics. We conjecture that this is a general mechanism for entanglement creation in driven dissipative quantum systems.Comment: Minor changes: Reference added and references correcte

    Relational time for systems of oscillators

    Full text link
    Using an elementary example based on two simple harmonic oscillators, we show how a relational time may be defined that leads to an approximate Schrodinger dynamics for subsystems, with corrections leading to an intrinsic decoherence in the energy eigenstates of the subsystem.Comment: Contribution to the Int. J. of Quant. Info. issue dedicated to the memory of Asher Pere

    Simulating quantum effects of cosmological expansion using a static ion trap

    Full text link
    We propose a new experimental testbed that uses ions in the collective ground state of a static trap for studying the analog of quantum-field effects in cosmological spacetimes, including the Gibbons-Hawking effect for a single detector in de Sitter spacetime, as well as the possibility of modeling inflationary structure formation and the entanglement signature of de Sitter spacetime. To date, proposals for using trapped ions in analog gravity experiments have simulated the effect of gravity on the field modes by directly manipulating the ions' motion. In contrast, by associating laboratory time with conformal time in the simulated universe, we can encode the full effect of curvature in the modulation of the laser used to couple the ions' vibrational motion and electronic states. This model simplifies the experimental requirements for modeling the analog of an expanding universe using trapped ions and enlarges the validity of the ion-trap analogy to a wide range of interesting cases.Comment: (v2) revisions based on referee comments, figure added for clarity; (v1) 17 pages, no figure

    Quantum information processing via a lossy bus

    Get PDF
    We describe a method to perform two qubit measurements and logic operations on pairs of qubits which each interact with a harmonic oscillator degree of freedom (the \emph{bus}), but do not directly interact with one another. Our scheme uses only weak interactions between the qubit and the bus, homodyne measurements, and single qubit operations. In contrast to earlier schemes, the technique presented here is extremely robust to photon loss in the bus mode, and can function with high fidelity even when the rate of photon loss is comparable to the strength of the qubit-bus coupling.Comment: Added more discussion on effects of noise. Typos correcte

    Mesoscopic one-way channels for quantum state transfer via the Quantum Hall Effect

    Get PDF
    We show that the one-way channel formalism of quantum optics has a physical realisation in electronic systems. In particular, we show that magnetic edge states form unidirectional quantum channels capable of coherently transporting electronic quantum information. Using the equivalence between one-way photonic channels and magnetic edge states, we adapt a proposal for quantum state transfer to mesoscopic systems using edge states as a quantum channel, and show that it is feasible with reasonable experimental parameters. We discuss how this protocol may be used to transfer information encoded in number, charge or spin states of quantum dots, so it may prove useful for transferring quantum information between parts of a solid-state quantum computer.Comment: 4 pages, 3 figure

    Quantum state transfer between a Bose-Einstein condensate and an optomechanical mirror

    Full text link
    In this paper we describe a scheme for state transfer between a trapped atomic Bose condensate and an optomechanical end-mirror mediated by a cavity field. Coupling between the mirror and the cold gas arises from the fact that the cavity field can produce density oscillations in the gas which in turn acts as an internal Bragg mirror for the field. After adiabatic elimination of the cavity field we find that the hybrid system of the gas and mirror is described by a beam splitter Hamiltonian that allows for state transfer, but only if the quantum nature of the cavity field is retained

    Quantum computation with optical coherent states

    Get PDF
    We show that quantum computation circuits using coherent states as the logical qubits can be constructed from simple linear networks, conditional photon measurements and "small" coherent superposition resource states
    • …
    corecore