1,485 research outputs found

    Cool for Cats

    Get PDF
    The iconic Schr\"odinger's cat state describes a system that may be in a superposition of two macroscopically distinct states, for example two clearly separated oscillator coherent states. Quite apart from their role in understanding the quantum classical boundary, such states have been suggested as offering a quantum advantage for quantum metrology, quantum communication and quantum computation. As is well known these applications have to face the difficulty that the irreversible interaction with an environment causes the superposition to rapidly evolve to a mixture of the component states in the case that the environment is not monitored. Here we show that by engineering the interaction with the environment there exists a large class of systems that can evolve irreversibly to a cat state. To be precise we show that it is possible to engineer an irreversible process so that the steady state is close to a pure Schr\"odinger's cat state by using double well systems and an environment comprising two-photon (or phonon) absorbers. We also show that it should be possible to prolong the lifetime of a Schr\"odinger's cat state exposed to the destructive effects of a conventional single-photon decohering environment. Our protocol should make it easier to prepare and maintain Schr\"odinger cat states which would be useful in applications of quantum metrology and information processing as well as being of interest to those probing the quantum to classical transition.Comment: 10 pages, 7 figures. Significantly updated version with supplementary informatio

    Quantum Estimation of Parameters of Classical Spacetimes

    Get PDF
    We describe a quantum limit to measurement of classical spacetimes. Specifically, we formulate a quantum Cramer-Rao lower bound for estimating the single parameter in any one-parameter family of spacetime metrics. We employ the locally covariant formulation of quantum field theory in curved spacetime, which allows for a manifestly background-independent derivation. The result is an uncertainty relation that applies to all globally hyperbolic spacetimes. Among other examples, we apply our method to detection of gravitational waves using the electromagnetic field as a probe, as in laser-interferometric gravitational-wave detectors. Other applications are discussed, from terrestrial gravimetry to cosmology.Comment: 23 pages. This article supersedes arXiv:1108.522

    Frequency up- and down-conversions in two-mode cavity quantum electrodynamics

    Full text link
    In this letter we present a scheme for the implementation of frequency up- and down-conversion operations in two-mode cavity quantum electrodynamics (QED). This protocol for engineering bilinear two-mode interactions could enlarge perspectives for quantum information manipulation and also be employed for fundamental tests of quantum theory in cavity QED. As an application we show how to generate a two-mode squeezed state in cavity QED (the original entangled state of Einstein-Podolsky-Rosen)

    Quantum interface between an electrical circuit and a single atom

    Get PDF
    We show how to bridge the divide between atomic systems and electronic devices by engineering a coupling between the motion of a single ion and the quantized electric field of a resonant circuit. Our method can be used to couple the internal state of an ion to the quantized circuit with the same speed as the internal-state coupling between two ions. All the well-known quantum information protocols linking ion internal and motional states can be converted to protocols between circuit photons and ion internal states. Our results enable quantum interfaces between solid state qubits, atomic qubits, and light, and lay the groundwork for a direct quantum connection between electrical and atomic metrology standards.Comment: Supplemental material available on reques

    Teleportation with a uniformly accelerated partner

    Get PDF
    In this work, we give a description of the process of teleportation between Alice in an inertial frame, and Rob who is in uniform acceleration with respect to Alice. The fidelity of the teleportation is reduced due to Unruh radiation in Rob's frame. In so far as teleportation is a measure of entanglement, our results suggest that quantum entanglement is degraded in non inertial frames.Comment: 7 pages with 4 figures (in revtex4

    Quantum limits to all-optical phase shifts in a Kerr nonlinear medium

    Get PDF
    We consider two copropagating fields in a nonlinear Kerr medium, each with a particular phase and intensity. The Kerr medium possesses an intensity-dependent refractive index and the phase shift of each field thus depends on the intensities of the fields. Classically it is possible to induce an arbitrary phase shift of one field (the signal field) by either increasing the intensity of the other field (the control field) or by increasing the interaction legnth. We show that if the intensity of the control field is low, the phase shift on the signal is limited by the discrete nature of the photon-number distribution in the control field and cannot be increased simply by increasing the interaction length. In general the maximum phase shift of the signal field is φ if the control field possesses φ photons. This limit arises as a consequence of quantum recurrence effects

    Quantum nondemolition measurements in optical cavities

    Get PDF
    We analyze schemes for performing quantum nondemolition (QND) measurements in optical cavities. We consider three schemes: (1) measurement of a quadrature phase amplitude using a parametric process, (2) measurement of a quadrature phase amplitude using the optical Kerr effect in a nonlinear fiber, and (3) measurement of the photon number also using the Kerr effect in a fiber. We show that in the second scheme an enhancement of the QND effect may be obtained by making the cavity finesse for the signal larger than that for the probe

    Second Law of Thermodynamics with Discrete Quantum Feedback Control

    Full text link
    A new thermodynamic inequality is derived which leads to the maximum work that can be extracted from multi-heat baths with the assistance of discrete quantum feedback control. The maximum work is determined by the free-energy difference and a generalized mutual information content between the thermodynamic system and the feedback controller. This maximum work can exceed that in conventional thermodynamics and, in the case of a heat cycle with two heat baths, the heat efficiency can be greater than that of the Carnot cycle. The consistency of our results with the second law of thermodynamics is ensured by the fact that work is needed for information processing of the feedback controller

    Quantum Connectivity of Space-Time and Gravitationally Induced Decorrelation of Entanglement

    Full text link
    We discuss an alternative formulation of the problem of quantum optical fields in a curved space-time using localized operators. We contrast the new formulation with the standard approach and find observable differences for entangled states. We propose an experiment in which an entangled pair of optical pulses are propagated through non-uniform gravitational fields and find that the new formulation predicts de-correlation of the optical entanglement under experimentally realistic conditions

    Scalable quantum field simulations of conditioned systems

    Full text link
    We demonstrate a technique for performing stochastic simulations of conditional master equations. The method is scalable for many quantum-field problems and therefore allows first-principles simulations of multimode bosonic fields undergoing continuous measurement, such as those controlled by measurement-based feedback. As examples, we demonstrate a 53-fold speed increase for the simulation of the feedback cooling of a single trapped particle, and the feedback cooling of a quantum field with 32 modes, which would be impractical using previous brute force methods.Comment: 5 pages, 2 figure
    • …
    corecore