107 research outputs found

    Faraway, so close. The comparative method and the potential of non-model animals in mitochondrial research

    Get PDF
    Inference from model organisms has been the engine for many discoveries in life science, but indiscriminate generalization leads to oversimplifications and misconceptions. Model organisms and inductive reasoning are irreplaceable: there is no other way to tackle the complexity of living systems. At the same time, it is not advisable to infer general patterns from a restricted number of species, which are very far from being representative of the diversity of life. Not all models are equal. Some organisms are suitable to find similarities across species, other highly specialized organisms can be used to focus on differences. In this opinion piece, we discuss the dominance of the mechanistic/reductionist approach in life sciences and make a case for an enhanced application of the comparative approach to study processes in all their various forms across different organisms. We also enlist some rising animal models in mitochondrial research, to exemplify how non-model organisms can be chosen in a comparative framework. These taxa often do not possess implemented tools and dedicated methods/resources. However, because of specific features, they have the potential to address still unanswered biological questions. Finally, we discuss future perspectives and caveats of the comparative method in the age of ‘big data’

    Bivalve molluscs as model systems for studying mitochondrial biology

    Get PDF
    The class Bivalvia is a highly successful and ancient taxon including ∼25,000 living species. During their long evolutionary history bivalves adapted to a wide range of physicochemical conditions, habitats, biological interactions, and feeding habits. Bivalves can have strikingly different size, and despite their apparently simple body plan, they evolved very different shell shapes, and complex anatomic structures. One of the most striking features of this class of animals is their peculiar mitochondrial biology: some bivalves have facultatively anaerobic mitochondria that allow them to survive prolonged periods of anoxia/hypoxia. Moreover, more than 100 species have now been reported showing the only known evolutionarily stable exception to the strictly maternal inheritance of mitochondria in animals, named doubly uniparental inheritance. Mitochondrial activity is fundamental to eukaryotic life, and thanks to their diversity and uncommon features, bivalves represent a great model system to expand our knowledge about mitochondrial biology, so far limited to a few species. We highlight recent works studying mitochondrial biology in bivalves at either genomic or physiological level. A link between these two approaches is still missing, and we believe that an integrated approach and collaborative relationships are the only possible ways to be successful in such endeavour

    Transcription Pattern of Neurotrophic Factors and Their Receptors in Adult Zebrafish Spinal Cord

    Get PDF
    In vertebrates, neurotrophins and their receptors play a fundamental role in the central and peripheral nervous systems. Several studies reported that each neurotrophin/receptor signalling pathway can perform various functions during axon development, neuronal growth, and plasticity. Previous investigations in some fish species have identified neurotrophins and their receptors in the spinal cord under physiological conditions and after injuries, highlighting their potential role during regeneration. In our study, for the first time, we used an excellent animal model, the zebrafish (Danio rerio), to compare the mRNA localization patterns of neurotrophins and receptors in the spinal cord. We quantified the levels of mRNA using qPCR, and identified the transcription pattern of each neurotrophin/receptor pathway via in situ hybridization. Our data show that ngf/trka are the most transcribed members in the adult zebrafish spinal cord

    Differential nickel-induced responses of olfactory sensory neuron populations in zebrafish

    Get PDF
    The olfactory epithelium of fish includes three main types of olfactory sensory neurons (OSNs). Whereas ciliated (cOSNs) and microvillous olfactory sensory neurons (mOSNs) are common to all vertebrates, a third, smaller group, the crypt cells, is exclusive for fish. Dissolved pollutants reach OSNs, thus resulting in impairment of the olfactory function with possible neurobehavioral damages, and nickel represents a diffuse olfactory toxicant. We studied the effects of three sublethal Ni2+ concentrations on the different OSN populations of zebrafish that is a widely used biological model. We applied image analysis with cell count and quantification of histochemically-detected markers of the different types of OSNs. The present study shows clear evidence of a differential responses of OSN populations to treatments. Densitometric values for G\u3b1 olf, a marker of cOSNs, decreased compared to control and showed a concentration-dependent effect in the ventral half of the olfactory rosette. The densitometric analysis of TRPC2, a marker of mOSNs, revealed a statistically significant reduction compared to control, smaller than the decrease for G\u3b1 olf and without concentration-dependent effects. After exposure, olfactory epithelium stained with anti-calretinin, a marker of c- and mOSNs, revealed a decrease in thickness while the sensory area appeared unchanged. The thickness reduction together with increased densitometric values for HuC/D, a marker of mature and immature neurons, suggests that the decrements in G\u3b1 olf and TRPC2 immunostaining may depend on cell death. However, reductions in the number of apical processes and of antigen expression could be a further explanation. We hypothesize that cOSNs are more sensitive than mOSNs to Ni2+ exposure. Difference between subpopulations of OSNs or differences in water flux throughout the olfactory cavity could account for the greater susceptibility of the OSNs located in the ventral half of the olfactory rosette. Cell count of anti-TrkA immunopositive cells reveals that Ni2+ exposure does not affect crypt cells. The results of this immunohistochemical study are not in line with those obtained by electro-olfactogram

    Comparing re‐hospitalisation rates in a real‐world naturalistic 24‐month follow‐up of psychotic patients with different treatment strategies: Oral versus LAI antipsychotics

    Get PDF
    AIM & BACKGROUND Non-adherence to antipsychotic treatment is a major issue in the management of severe psychiatric disorders, because it is usually related to future relapses and re-hospitalisations. Long-Acting-Injection (LAI) antipsychotics can be useful to increase treatment adherence in these patients. The aim of the present study was to compare the re-hospitalisation rates of psychotic patients discharged from a psychiatric ward and then, divided into three groups upon the treatment received: LAI antipsychotic, oral antipsychotic at home or oral antipsychotic administered daily by psychiatric nurse staff as patients lived in a long-term care facility. METHODS Data on all inpatients consecutively admitted to the Psychiatric Unit of the Nuovo Ospedale Apuano (Massa, Italy), between January 2017 and December 2018, were obtained by the registration record system. Information about eventual re-hospitalisations of these patients, occurred within a 24-month timeframe since discharge, were collected from the same database. RESULTS In a Kaplan-Meyer analysis, patients treated with LAI antipsychotics showed significantly lower re-hospitalisation rates in the first 24 months after discharge than those treated with oral ones. CONCLUSIONS This study highlights the impact of LAI antipsychotics in preventing re-hospitalisation in severe psychotic patients at high risk in a naturalistic setting. The benefits appear relevant also with respect to a controlled long-term oral antipsychotic treatment, however, further studies are needed to develop more tailored intervention strategies in such complex psychiatric population

    Evaluation of the galactogogue effect of silymarin on mothers of preterm newborns (<32 weeks)

    Get PDF
    Hypogalactia has a relative high frequency in women having delivered preterm infants, who often have difficulties in maintaining a sufficient production of milk for their infants’ needs over prolonged periods of time. Recent studies have shown a potential galactogogue effect of silymarin on milk production in animal models (cows and rats) and in humans (mothers of term newborns); nonetheless, none of the studies conducted on humans consisted of double-blind randomized clinical trials and no data are available concerning mothers who delivered preterm infants. The aim of our study was to assess the efficacy of silymarin (BIO-C®) as galactogogue and its tolerability in mothers who delivered preterm infants. We enrolled 50 mothers at 10±1 days post-partum who had delivered infants at ® and placebo arms. No adverse events were observed in the 2 arms among mothers and infants, and silymarin and its metabolites were not detectable in the analyzed human milk samples. Further investigation on specific patient groups affected by hypogalactia, defined according to stricter criteria, should be planned to assess the efficacy of the product in increasing milk production

    Multi-tissue RNA-Seq Analysis and Long-read-based Genome Assembly Reveal Complex Sex-specific Gene Regulation and Molecular Evolution in the Manila Clam

    Get PDF
    The molecular factors and gene regulation involved in sex determination and gonad differentiation in bivalve molluscs are unknown. It has been suggested that doubly uniparental inheritance (DUI) of mitochondria may be involved in these processes in species such as the ubiquitous and commercially relevant Manila clam, Ruditapes philippinarum. We present the first long-read-based de novo genome assembly of a Manila clam, and a RNA-Seq multi-tissue analysis of 15 females and 15 males. The highly contiguous genome assembly was used as reference to investigate gene expression, alternative splicing, sequence evolution, tissue-specific co-expression networks, and sexual contrasting SNPs. Differential expression (DE) and differential splicing (DS) analyses revealed sex-specific transcriptional regulation in gonads, but not in somatic tissues. Co-expression networks revealed complex gene regulation in gonads, and genes in gonad-associated modules showed high tissue specificity. However, male gonad-associated modules showed contrasting patterns of sequence evolution and tissue specificity. One gene set was related to the structural organization of male gametes and presented slow sequence evolution but high pleiotropy, whereas another gene set was enriched in reproduction-related processes and characterized by fast sequence evolution and tissue specificity. Sexual contrasting SNPs were found in genes overrepresented in mitochondrial-related functions, providing new candidates for investigating the relationship between mitochondria and sex in DUI species. Together, these results increase our understanding of the role of DE, DS, and sequence evolution of sex-specific genes in an understudied taxon. We also provide resourceful genomic data for studies regarding sex diagnosis and breeding in bivalves

    An Essential Role for Diet in Exercise-Mediated Protection against Dyslipidemia, Inflammation and Atherosclerosis in ApoE-/- Mice

    Get PDF
    Diet and exercise promote cardiovascular health but their relative contributions to atherosclerosis are not fully known. The transition from a sedentary to active lifestyle requires increased caloric intake to achieve energy balance. Using atherosclerosis-prone ApoE-null mice we sought to determine whether the benefits of exercise for arterial disease are dependent on the food source of the additional calories.Mice were fed a high-fat diet (HF) for 4.5 months to initiate atherosclerosis after which time half were continued on HF while the other half were switched to a high protein/fish oil diet (HP). Half of each group underwent voluntary running. Food intake, running distance, body weight, lipids, inflammation markers, and atherosclerotic plaque were quantified. Two-way ANOVA tests were used to assess differences and interactions between groups. Exercised mice ran approximately 6-km per day with no difference between groups. Both groups increased food intake during exercise and there was a significant main effect of exercise F((1,44) = 9.86, p<0.01) without interaction. Diet or exercise produced significant independent effects on body weight (diet: F(1,52) = 6.85, p = 0.012; exercise: F(1,52) = 9.52, p<0.01) with no significant interaction. The combination of HP diet and exercise produced a greater decrease in total cholesterol (F(1, 46) = 7.9, p<0.01) and LDL (F(1, 46) = 7.33, p<0.01) with a large effect on the size of the interaction. HP diet and exercise independently reduced TGL and VLDL (p<0.05 and 0.001 respectively). Interleukin 6 and C-reactive protein were highest in the HF-sedentary group and were significantly reduced by exercise only in this group. Plaque accumulation in the aortic arch, a marker of cardiovascular events was reduced by the HP diet and the effect was significantly potentiated by exercise only in this group resulting in significant plaque regression (F1, 49 = 4.77, p<0.05).In this model exercise is beneficial to combat dyslipidemia and protect from atherosclerosis only when combined with diet

    Doubly Uniparental Inheritance of Mitochondria As a Model System for Studying Germ Line Formation

    Get PDF
    BACKGROUND: Doubly Uniparental Inheritance (DUI) of mitochondria occurs when both mothers and fathers are capable of transmitting mitochondria to their offspring, in contrast to the typical Strictly Maternal Inheritance (SMI). DUI was found in some bivalve molluscs, in which two mitochondrial genomes are inherited, one through eggs, the other through sperm. During male embryo development, spermatozoon mitochondria aggregate in proximity of the first cleavage furrow and end up in the primordial germ cells, while they are dispersed in female embryos. METHODOLOGY/PRINCIPAL FINDINGS: We used MitoTracker, microtubule staining and transmission electron microscopy to examine the mechanisms of this unusual distribution of sperm mitochondria in the DUI species Ruditapes philippinarum. Our results suggest that in male embryos the midbody deriving from the mitotic spindle of the first division concurs in positioning the aggregate of sperm mitochondria. Furthermore, an immunocytochemical analysis showed that the germ line determinant Vasa segregates close to the first cleavage furrow. CONCLUSIONS/SIGNIFICANCE: In DUI male embryos, spermatozoon mitochondria aggregate in a stable area on the animal-vegetal axis: in organisms with spiral segmentation this zone is not involved in cleavage, so the aggregation is maintained. Moreover, sperm mitochondria reach the same embryonic area in which also germ plasm is transferred. In 2-blastomere embryos, the segregation of sperm mitochondria in the same region with Vasa suggests their contribution in male germ line formation. In DUI male embryos, M-type mitochondria must be recognized by egg factors to be actively transferred in the germ line, where they become dominant replacing the Balbiani body mitochondria. The typical features of germ line assembly point to a common biological mechanism shared by DUI and SMI organisms. Although the molecular dynamics of the segregation of sperm mitochondria in DUI species are unknown, they could be a variation of the mechanism regulating the mitochondrial bottleneck in all metazoans

    Evidence for a Fourteenth mtDNA-Encoded Protein in the Female-Transmitted mtDNA of Marine Mussels (Bivalvia: Mytilidae)

    Get PDF
    BACKGROUND: A novel feature for animal mitochondrial genomes has been recently established: i.e., the presence of additional, lineage-specific, mtDNA-encoded proteins with functional significance. This feature has been observed in freshwater mussels with doubly uniparental inheritance of mtDNA (DUI). The latter unique system of mtDNA transmission, which also exists in some marine mussels and marine clams, is characterized by one mt genome inherited from the female parent (F mtDNA) and one mt genome inherited from the male parent (M mtDNA). In freshwater mussels, the novel mtDNA-encoded proteins have been shown to be mt genome-specific (i.e., one novel protein for F genomes and one novel protein for M genomes). It has been hypothesized that these novel, F- and M-specific, mtDNA-encoded proteins (and/or other F- and/or M-specific mtDNA sequences) could be responsible for the different modes of mtDNA transmission in bivalves but this remains to be demonstrated. METHODOLOGY/PRINCIPAL FINDINGS: We investigated all complete (or nearly complete) female- and male-transmitted marine mussel mtDNAs previously sequenced for the presence of ORFs that could have functional importance in these bivalves. Our results confirm the presence of a novel F genome-specific mt ORF, of significant length (>100aa) and located in the control region, that most likely has functional significance in marine mussels. The identification of this ORF in five Mytilus species suggests that it has been maintained in the mytilid lineage (subfamily Mytilinae) for ∼13 million years. Furthermore, this ORF likely has a homologue in the F mt genome of Musculista senhousia, a DUI-containing mytilid species in the subfamily Crenellinae. We present evidence supporting the functionality of this F-specific ORF at the transcriptional, amino acid and nucleotide levels. CONCLUSIONS/SIGNIFICANCE: Our results offer support for the hypothesis that "novel F genome-specific mitochondrial genes" are involved in key biological functions in bivalve species with DUI
    corecore