6,255 research outputs found
Stellar wind-magnetosphere interaction at exoplanets: computations of auroral radio powers
We present calculations of the auroral radio powers expected from exoplanets
with magnetospheres driven by an Earth-like magnetospheric interaction with the
solar wind. Specifically, we compute the twin cell-vortical ionospheric flows,
currents, and resulting radio powers resulting from a Dungey cycle process
driven by dayside and nightside magnetic reconnection, as a function of
planetary orbital distance and magnetic field strength. We include saturation
of the magnetospheric convection, as observed at the terrestrial magnetosphere,
and we present power law approximations for the convection potentials, radio
powers and spectral flux densities. We specifically consider a solar-age system
and a young (1 Gyr) system. We show that the radio power increases with
magnetic field strength for magnetospheres with saturated convection potential,
and broadly decreases with increasing orbital distance. We show that the
magnetospheric convection at hot Jupiters will be saturated, and thus unable to
dissipate the full available incident Poynting flux, such that the magnetic
Radiometric Bode's Law (RBL) presents a substantial overestimation of the radio
powers for hot Jupiters. Our radio powers for hot Jupiters are 5-1300 TW
for hot Jupiters with field strengths of 0.1-10 orbiting a Sun-like star,
while we find that competing effects yield essentially identical powers for hot
Jupiters orbiting a young Sun-like star. However, in particular for planets
with weaker magnetic fields our powers are higher at larger orbital distances
than given by the RBL, and there are many configurations of planet that are
expected to be detectable using SKA.Comment: Accepted for publication in Mon. Not. R. Astron. So
Security and confidentiality approach for the Clinical E-Science Framework (CLEF)
Objectives: CLEF is an MRC sponsored project in the E-Science programme that aims to establish methodologies and a technical infrastructure for the next generation of integrated clinical and bioscience research. Methods: The heart of the CLEF approach to this challenge is to design and develop a pseudonymised repository of histories of cancer patients that can be accessed by researchers. Robust mechanisms and policies have been developed to ensure that patient privacy and confidentiality are preserved while delivering a repository of such medically rich information for the purposes of scientific research. Results: This paper summarises the overall approach adopted by CLEF to meet data protection requirements, including the data flows, pseudonymisation measures and additional monitoring policies that are currently being developed. Conclusion: Once evaluated, it is hoped that the CLEF approach can serve as a model for other distributed electronic health record repositories to be accessed for research
Security and confidentiality approach for the Clinical E-Science Framework (CLEF)
CLEF is an MRC sponsored project in the E-Science programme that aims to
establish policies and infrastructure for the next generation of integrated clinical and
bioscience research. One of the major goals of the project is to provide a
pseudonymised repository of histories of cancer patients that can be accessed by
researchers. Robust mechanisms and policies are needed to ensure that patient
privacy and confidentiality are preserved while delivering a repository of such
medically rich information for the purposes of scientific research. This paper
summarises the overall approach adopted by CLEF to meet data protection
requirements, including the data flows and pseudonymisation mechanisms that are
currently being developed. Intended constraints and monitoring policies that will
apply to research interrogation of the repository are also outlined. Once evaluated, it
is hoped that the CLEF approach can serve as a model for other distributed
electronic health record repositories to be accessed for research
An Upper Bound to Zero-Delay Rate Distortion via Kalman Filtering for Vector Gaussian Sources
We deal with zero-delay source coding of a vector Gaussian autoregressive
(AR) source subject to an average mean squared error (MSE) fidelity criterion.
Toward this end, we consider the nonanticipative rate distortion function
(NRDF) which is a lower bound to the causal and zero-delay rate distortion
function (RDF). We use the realization scheme with feedback proposed in [1] to
model the corresponding optimal "test-channel" of the NRDF, when considering
vector Gaussian AR(1) sources subject to an average MSE distortion. We give
conditions on the vector Gaussian AR(1) source to ensure asymptotic
stationarity of the realization scheme (bounded performance). Then, we encode
the vector innovations due to Kalman filtering via lattice quantization with
subtractive dither and memoryless entropy coding. This coding scheme provides a
tight upper bound to the zero-delay Gaussian RDF. We extend this result to
vector Gaussian AR sources of any finite order. Further, we show that for
infinite dimensional vector Gaussian AR sources of any finite order, the NRDF
coincides with the zero-delay RDF. Our theoretical framework is corroborated
with a simulation example.Comment: 7 pages, 6 figures, accepted for publication in IEEE Information
Theory Workshop (ITW
Constrained Dynamics of Tachyon Field in FRWL Spacetime
In this paper we continue study of tachyon scalar field described by a
Dirac-Born-Infeld (DBI) type action with constraints in the cosmological
context. The proposed extension of the system introducing an auxiliary field in
the minisuperspace framework is discussed. A new equivalent set of constraints
is constructed, satisfying the usual regularity conditions.Comment: 10 pages, to be published in the Special Issue of the Facta
Universitatis Series: Physics, Chemistry and Technology devoted to the
SEENET-MTP Balkan Workshop BSW2019 (3-14 June 2018, Nis, Serbia
Diagnostic and therapeutic considerations in idiopathic hypereosinophilia with warm autoimmune hemolytic anemia.
Hypereosinophilic syndrome (HES) encompasses numerous diverse conditions resulting in peripheral hypereosinophilia that cannot be explained by hypersensitivity, infection, or atopy and that is not associated with known systemic diseases with specific organ involvement. HES is often attributed to neoplastic or reactive causes, such as chronic eosinophilic leukemia, although a majority of cases remains unexplained and are considered idiopathic. Here, we review the current diagnosis and management of HES and present a unique case of profound hypereosinophilia associated with warm autoimmune hemolytic anemia requiring intensive management. This case clearly illustrates the limitations of current knowledge with respect to hypereosinophilia syndrome as well as the challenges associated with its classification and management
- …