2 research outputs found

    Catalytic oxidation of organic sulfides by H2O2 in the presence of titanosilicate zeolites

    Get PDF
    [EN] Titanosilicate ferrierite zeolite (FER) and its delaminated form (ITQ-6), with various Si/Ti molar ratios, were synthetized and tested as catalysts for diphenyl sulfide (Ph2S) and dimethyl sulfide (DMS) oxidation with H2O2. The zeolites were characterized with respect to their chemical composition (ICP-OES), structure (XRD, UV-vis DRS) and texture (low-temperature N-2 adsorption-desorption). Titanium in the FER and ITQ-6 samples was present mainly in the zeolite framework with a significant contribution of titanium in the extraframework positions. Titanosilicate zeolites of FER and ITQ-6 series were found to be active catalysts of diphenyl and dimethyl sulfides oxidation by H2O2 to sulfoxides (Ph2SO/DMSO) and sulfones (Ph2SO2/DMSO2). The efficiency of these reactions depends on the porous structure of the zeolite catalysts - conversion of larger molecules of diphenyl sulfide was significantly higher in the presence of delaminated zeolite Ti-ITQ-6 due to the possibility of the interlayer mesopores penetration by reactants. On the other side diphenyl sulfide molecules are too large to be accommodated into micropores of FER zeolite. The efficiency of dimethyl sulfide conversion, due to relatively small size of this molecule, was similar in the presence of Ti-FER and Ti-ITQ-6 zeolites. For all catalysts, the organic sulfide conversion was significantly intensified under UV irradiation. It was suggested that Ti cations in the zeolite framework, as well as in the extraframework, species play a role of the single site photocatalysts active in the formation of hydroxyl radicals, which are known to be effective oxidants of the organic sulfides.The studies were carried out in the frame of project 2016/21/B/ST5/00242 from the National Science Centre (Poland). Part of the research was done with equipment purchased in the frame of European Regional Development Fund (Polish Innovation Economy Operational Program -contract no. POIG.02.01.00-12-023/08). U.D. acknowledges to the Spanish Government by the funding (MAT2017-82288-C2-1-P). The work was partially supported by the Foundation for Polish Science (FNP) within the TEAM project (POIR.04.04.00-00-3D74/16).Radko, M.; Rutkowska, M.; Kowalczyk, A.; Mikrut, P.; Swies, A.; Díaz Morales, UM.; Palomares Gimeno, AE.... (2020). Catalytic oxidation of organic sulfides by H2O2 in the presence of titanosilicate zeolites. Microporous and Mesoporous Materials. 302:1-9. https://doi.org/10.1016/j.micromeso.2020.110219S19302Weitkamp, J. (2000). Zeolites and catalysis. Solid State Ionics, 131(1-2), 175-188. doi:10.1016/s0167-2738(00)00632-9Schreyeck, L., Caullet, P., Mougenel, J.-C., Guth, J.-L., & Marler, B. (1995). A layered microporous aluminosilicate precursor of FER-type zeolite. Journal of the Chemical Society, Chemical Communications, (21), 2187. doi:10.1039/c39950002187Solsona, B., Lopez Nieto, J. M., & Díaz, U. (2006). Siliceous ITQ-6: A new support for vanadia in the oxidative dehydrogenation of propane. Microporous and Mesoporous Materials, 94(1-3), 339-347. doi:10.1016/j.micromeso.2006.04.007Corma, A., Diaz, U., Domine, M. E., & Fornés, V. (2000). AlITQ-6 and TiITQ-6: Synthesis, Characterization, and Catalytic Activity. Angewandte Chemie International Edition, 39(8), 1499-1501. doi:10.1002/(sici)1521-3773(20000417)39:83.0.co;2-0Corma, A., Diaz, U., Domine, M. E., & Fornés, V. (2000). New Aluminosilicate and Titanosilicate Delaminated Materials Active for Acid Catalysis, and Oxidation Reactions Using H2O2. Journal of the American Chemical Society, 122(12), 2804-2809. doi:10.1021/ja9938130Shevade, S., Ahedi, R. K., & Kotasthane, A. N. (1997). Catalysis Letters, 49(1/2), 69-75. doi:10.1023/a:1019092918937Anand, R., Shevade, S. S., Ahedi, R. K., Mirajkar, S. P., & Rao, B. S. (1999). Catalysis Letters, 62(2/4), 209-213. doi:10.1023/a:1019099006237Corma, A., Diaz, U., Domine, M. E., & Fornés, V. (2000). Ti-ferrierite and TiITQ-6: synthesis and catalytic activity for the epoxidation of olefins with H2O2. Chemical Communications, (2), 137-138. doi:10.1039/a908748fMartausová, I., Spustová, D., Cvejn, D., Martaus, A., Lacný, Z., & Přech, J. (2019). Catalytic activity of advanced titanosilicate zeolites in hydrogen peroxide S-oxidation of methyl(phenyl)sulfide. Catalysis Today, 324, 144-153. doi:10.1016/j.cattod.2018.07.003Kon, Y., Yokoi, T., Yoshioka, M., Uesaka, Y., Kujira, H., Sato, K., & Tatsumi, T. (2013). Selective oxidation of bulky sulfides to sulfoxides over titanosilicates having an MWW structure in the presence of H2O2 under organic solvent-free conditions. Tetrahedron Letters, 54(36), 4918-4921. doi:10.1016/j.tetlet.2013.07.006Přech, J. (2017). Catalytic performance of advanced titanosilicate selective oxidation catalysts – a review. Catalysis Reviews, 60(1), 71-131. doi:10.1080/01614940.2017.1389111Sato, K., Hyodo, M., Aoki, M., Zheng, X.-Q., & Noyori, R. (2001). Oxidation of sulfides to sulfoxides and sulfones with 30% hydrogen peroxide under organic solvent- and halogen-free conditions. Tetrahedron, 57(13), 2469-2476. doi:10.1016/s0040-4020(01)00068-0Radko, M., Kowalczyk, A., Bidzińska, E., Witkowski, S., Górecka, S., Wierzbicki, D., … Chmielarz, L. (2018). Titanium dioxide doped with vanadium as effective catalyst for selective oxidation of diphenyl sulfide to diphenyl sulfonate. Journal of Thermal Analysis and Calorimetry, 132(3), 1471-1480. doi:10.1007/s10973-018-7119-9Xia, Q.-H., & Tatsumi, T. (2005). Crystallization kinetics of nanosized Tiβ zeolites with high oxidation activity by a dry-gel conversion technique. Materials Chemistry and Physics, 89(1), 89-98. doi:10.1016/j.matchemphys.2004.08.034Corma, A., Fornés, V., & Díaz, U. (2001). Chemical Communications, (24), 2642-2643. doi:10.1039/b108777kChica, A., Diaz, U., Fornés, V., & Corma, A. (2009). Changing the hydroisomerization to hydrocracking ratio of long chain alkanes by varying the level of delamination in zeolitic (ITQ-6) materials. Catalysis Today, 147(3-4), 179-185. doi:10.1016/j.cattod.2008.10.046Hu, H., Ke, M., Zhang, K., Liu, Q., Yu, P., Liu, Y., … Liu, W. (2017). Designing ferrierite-based catalysts with improved properties for skeletal isomerization of n-butene to isobutene. RSC Advances, 7(50), 31535-31543. doi:10.1039/c7ra04777kThommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069. doi:10.1515/pac-2014-1117Corma, A., Fornes, V., & Rey, F. (2002). Delaminated Zeolites: An Efficient Support for Enzymes. Advanced Materials, 14(1), 71-74. doi:10.1002/1521-4095(20020104)14:13.0.co;2-wZukal, A., Dominguez, I., Mayerová, J., & Čejka, J. (2009). Functionalization of Delaminated Zeolite ITQ-6 for the Adsorption of Carbon Dioxide. Langmuir, 25(17), 10314-10321. doi:10.1021/la901156zSegura, Y., Chmielarz, L., Kustrowski, P., Cool, P., Dziembaj, R., & Vansant, E. F. (2005). Characterisation and reactivity of vanadia–titania supported SBA-15 in the SCR of NO with ammonia. Applied Catalysis B: Environmental, 61(1-2), 69-78. doi:10.1016/j.apcatb.2005.04.011Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406nBlasco, T., Corma, A., Navarro, M. T., & Pariente, J. P. (1995). Synthesis, Characterization, and Catalytic Activity of Ti-MCM-41 Structures. Journal of Catalysis, 156(1), 65-74. doi:10.1006/jcat.1995.1232Yang, B.-T., & Wu, P. (2014). Post-synthesis and catalytic performance of FER type sub-zeolite Ti-ECNU-8. Chinese Chemical Letters, 25(12), 1511-1514. doi:10.1016/j.cclet.2014.09.003Chmielarz, L., Piwowarska, Z., Kuśtrowski, P., Gil, B., Adamski, A., Dudek, B., & Michalik, M. (2009). Porous clay heterostructures (PCHs) intercalated with silica-titania pillars and modified with transition metals as catalysts for the DeNOx process. Applied Catalysis B: Environmental, 91(1-2), 449-459. doi:10.1016/j.apcatb.2009.06.014Radko, M., Kowalczyk, A., Mikrut, P., Witkowski, S., Mozgawa, W., Macyk, W., & Chmielarz, L. (2020). Catalytic and photocatalytic oxidation of diphenyl sulphide to diphenyl sulfoxide over titanium dioxide doped with vanadium, zinc, and tin. RSC Advances, 10(7), 4023-4031. doi:10.1039/c9ra09903dBordiga, S., Bonino, F., Damin, A., & Lamberti, C. (2007). Reactivity of Ti(iv) species hosted in TS-1 towards H2O2–H2O solutions investigated by ab initio cluster and periodic approaches combined with experimental XANES and EXAFS data: a review and new highlights. Physical Chemistry Chemical Physics, 9(35), 4854. doi:10.1039/b706637fTozzola, G., Mantegazza, M. A., Ranghino, G., Petrini, G., Bordiga, S., Ricchiardi, G., … Zecchina, A. (1998). On the Structure of the Active Site of Ti-Silicalite in Reactions with Hydrogen Peroxide: A Vibrational and Computational Study. Journal of Catalysis, 179(1), 64-71. doi:10.1006/jcat.1998.2205Novara, C., Alfayate, A., Berlier, G., Maurelli, S., & Chiesa, M. (2013). The interaction of H2O2 with TiAlPO-5 molecular sieves: probing the catalytic potential of framework substituted Ti ions. Physical Chemistry Chemical Physics, 15(26), 11099. doi:10.1039/c3cp51214bChen, L. ., Jaenicke, S., Chuah, G. ., & Ang, H. . (1996). UV absorption study of solid catalysts. Journal of Electron Spectroscopy and Related Phenomena, 82(3), 203-208. doi:10.1016/s0368-2048(96)03072-1Karlsen, E., & Schöffel, K. (1996). Titanium-silicalite catalyzed epoxidation of ethylene with hydrogen peroxide. A theoretical study. Catalysis Today, 32(1-4), 107-114. doi:10.1016/s0920-5861(96)00176-9Juan, Z., Dishun, Z., Liyan, Y., & Yongbo, L. (2010). Photocatalytic oxidation dibenzothiophene using TS-1. Chemical Engineering Journal, 156(3), 528-531. doi:10.1016/j.cej.2009.04.032Lee, G. D., Jung, S. K., Jeong, Y. J., Park, J. H., Lim, K. T., Ahn, B. H., & Hong, S. S. (2003). Photocatalytic decomposition of 4-nitrophenol over titanium silicalite (TS-1) catalysts. Applied Catalysis A: General, 239(1-2), 197-208. doi:10.1016/s0926-860x(02)00389-7Howe, R. F., & Krisnandi, Y. K. (2001). Photoreactivity of ETS-10. Chemical Communications, (17), 1588-1589. doi:10.1039/b104870
    corecore