33 research outputs found

    Characterization of Salmonella enterica serovar Enteritidis isolates recovered from blood and stool specimens in Thailand

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacteremia due to <it>Salmonella</it> spp. is a life-threatening condition and is commonly associated with immune compromise. A 2009 observational study estimated risk factors for the ten most common non-typhoidal <it>Salmonella</it> (NTS) serovars isolated from Thai patients between 2002–2007. In this study, 60.8% of <it>Salmonella enterica</it> serovar Enteritidis isolates (n = 1517) were recovered from blood specimens and infection with <it>Salmonella</it> serovar Enteritidis was a statistically significant risk factor for bacteremia when compared to other NTS serovars. Based on this information, we characterized a subset of isolates collected in 2008 to determine if specific clones were recovered from blood or stool specimens at a higher rate. Twenty blood isolates and 20 stool isolates were selected for antimicrobial resistance testing (MIC), phage typing, PFGE, and MLVA.</p> <p>Result</p> <p>Eight antibiogrammes, seven MLVA types, 14 <it>Xba</it>I/<it>Bln</it>I PFGE pattern combinations, and 11 phage types were observed indicating considerable diversity among the 40 isolates characterized. Composite analysis based on PFGE and MLVA data revealed 22 genotypes. Seven of the genotypes containing two or more isolates were from both stool and blood specimens originating from various months and zones. Additionally, those genotypes were all further discriminated by phage type and/or antibiogramme. Ninety percent of the isolates were ciprofloxacin resistant.</p> <p>Conclusions</p> <p>The increased percentage of bloodstream infections as described in the 2009 observational study could not be attributed to a single clone. Future efforts should focus on assessing the immune status of bacteriaemic patients and identifying prevention and control measures, including attribution studies characterizing non-clinical (animal, food, and environmental) isolates.</p

    Proficiency of WHO Global Foodborne Infections Network External Quality Assurance System participants in the identification and susceptibility testing of thermo-tolerant Campylobacter spp. from 2003-2012

    Get PDF
    Campylobacter spp. are foodborne and waterborne pathogens. While rather accurate estimates for these pathogens are available in industrialized countries, a lack of diagnostic capacity in developing countries limits accurate assessments of prevalence in many regions. Proficiency in the identification and susceptibility testing of these organisms is critical for surveillance and control efforts. The aim of the study was to assess performance for identification and susceptibility testing of thermotolerant Campylobacter spp. among laboratories participating in the World Health Organization (WHO) Global Foodborne Infections Network (GFN) External Quality Assurance System (EQAS) over a 9-year period. Participants (primarily national-level laboratories) were encouraged to self-evaluate their performance as part of continuous quality improvement. The ability to correctly identify Campylobacter spp. varied by year and ranged from 61.9% (2008) to 90.7% (2012), and the ability to correctly perform antimicrobial susceptibility testing (AST) for Campylobacter spp. appeared to steadily increase from 91.4% to 93.6% in the test period (2009 to 2012). The poorest performance (60.0% correct identification and 86.8% correct AST results) was observed in African laboratories. Overall, approximately 10% of laboratories reported either an incorrect identification or antibiogram. As most participants were supranational reference laboratories, these data raise significant concerns regarding capacity and proficiency at the local clinical level. Addressing these diagnostic challenges is critical for both patient-level management and broader surveillance and control efforts.</p

    Identification by PCR of Non-typhoidal Salmonella enterica Serovars Associated with Invasive Infections among Febrile Patients in Mali

    Get PDF
    The genus Salmonella has more than 2500 serological variants (serovars), such as Salmonella enterica serovar Typhi and Salmonella Paratyphi A and B, that cause, respectively, typhoid and paratyphoid fevers (enteric fevers), and a large number of non-typhoidal Salmonella (NTS) serovars that cause gastroenteritis in healthy hosts. In young infants, the elderly and immunocompromised hosts, NTS can cause severe, fatal invasive disease. Multiple studies of pediatric patients in sub-Saharan Africa have documented the important role of NTS, in particular Salmonella Typhimurium and Salmonella Enteritidis (and to a lesser degree Salmonella Dublin), as invasive bacterial pathogens. Salmonella spp. are isolated from blood and identified by standard microbiological techniques and the serovar is ascertained by agglutination with commercial antisera. PCR-based typing techniques are becoming increasingly popular in developing countries, in part because high quality typing sera are difficult to obtain and expensive and H serotyping is technically difficult. We have developed a series of polymerase chain reactions (PCRs) to identify Salmonella Typhimurium and variants, Salmonella Enteritidis and Salmonella Dublin. We successfully identified 327 Salmonella isolates using our multiplex PCR. We also designed primers to detect Salmonella Stanleyville, a serovar found in West Africa. Another PCR generally differentiated diphasic Salmonella Typhimurium and monophasic Salmonella Typhimurium variant strains from other closely related strains. The PCRs described here will enable more laboratories in developing countries to serotype NTS that have been isolated from blood

    Multiplex, Bead-Based Suspension Array for Molecular Determination of Common Salmonella Serogroups▿ †

    No full text
    We report the development and evaluation of a Salmonella O-group-specific Bio-Plex assay to detect the six most common serogroups in the United States (B, C1, C2, D, E, and O13) plus serotype Paratyphi A. The assay is based on rfb gene targets directly involved in O-antigen biosynthesis; it can be completed 45 min post-PCR amplification. The assay correctly and specifically identified 362 of 384 (94.3%) isolates tested in comparison to traditional serotyping. Seventeen isolates (4.4%) produced results consistent with what is known about the molecular basis for serotypes but different from the results of traditional serotyping, and five isolates (1.3%) generated false-negative results. Molecular determination of the serogroup for rough isolates was consistent with a common serotype in most instances, indicating that this approach has the potential to provide O-group information for isolates that do not express an O antigen. We also report the sequence of the O-antigen-encoding rfb gene cluster from Salmonella enterica serotype Poona (serogroup O13). Compared with other, previously characterized rfb regions, the O13 rfb gene cluster was most closely related to Escherichia coli O127 and O86. The O-group Bio-Plex assay described here provides an easy-to-use, high-throughput system for rapid detection of common Salmonella serogroups
    corecore