15 research outputs found

    Experimental study of nanoscale metal clusters using synchrotron radiation excited photoelectron spectroscopy

    No full text
    Abstract In this work an experimental study of size varied, neutral, and free metal clusters using synchrotron radiation excited photoelectron spectroscopy was performed. The combined core-level and valence photoelectron spectroscopic investigation indicates metallic properties for nanoscale Rb, K, Sn, and Bi clusters. In the case of Sn the experimental results suggest a metal-to-insulator transition occurring at the studied size range. In addition to the experimental results the technical implementation of the cluster production set-up is presented and jellium-model-based simulations are compared with the experimental results of the Rb and K clusters

    Chemical Bonding of Termination Species in 2D Carbides Investigated through Valence Band UPS/XPS of Ti3C2Tx MXene

    No full text
    MXenes are technologically interesting 2D materials that show potential in numerous applications. The properties of the MXenes depend at large extent on the selection of elements that build the 2D MX-layer. Another key parameter for tuning the attractive material properties is the species that terminate the surfaces of the MX-layers. Although being an important parameter, experimental studies on the bonding between the MX-layers and the termination species are few and thus an interesting subject of investigation. Here we show that the termination species fluorine (F) bonds to the T3C2-surface mainly through Ti 3p – F 2p hybridization and that oxygen (O) bonds through Ti 3p – O 2p hybridization with a significant contribution of Ti 3d and Ti 4p. The study further shows that the T3C2-surface is not only terminated by F and O on the threefold hollow face-centered-cubic (fcc) site. A significant amount of O sits on a bridge site bonded to two Ti surface atoms on the T3C2-surface. In addition, the results provide no support for hydroxide (OH) termination on the T3C2-surface. On the contrary, the comparison of the valence band intensity distribution obtained through ultraviolet- and x-ray photoelectron spectroscopy with computed spectra by density of states, weighed by matrix elements and sensitivity factors, reveals that OH cannot be considered as a inherent termination species in Ti3C2Tx. The results from this study have implications for correct modeling of the structure of MXenes and the corresponding materials properties. Especially in applications where surface composition and charge are important, such as supercapacitors, Li-ion batteries, electrocatalysis, and fuel- and solar cells, where intercalation processes are essential.Funding agencies: Proposals 20190625, 20191107, and 20200582, the Swedish ResearchCouncil under contract 2018-07152, the Swedish Governmental Agency for Innovation Systems under contract 2018-04969, and Formas under contract 2019-02496, the Swedish Research Council through Grant Agreement No.2016-07213, the Swedish Research Council (VR) LiLi-NFM Linnaeus Environmentand Project Grant No. 621-2009-5258, the SwedishGovernment Strategic Research Area in Materials Science on Functional Materials at Linköping University (Faculty Grant SFO-Mat-LiU No. 2009-00971), the Swedish Energy Research (GrantNo. 43606-1) and the Carl Tryggers Foundation (CTS16:303,CTS14:310, CTS20:272).</p

    Surface site coordination dependent responses resolved in free clusters: applications for neutral sub-nanometer cluster studies

    No full text
    In this paper we demonstrate how surface site specific experimental information can be obtained from free low nanometer scale clusters using photoelectron spectroscopy utilising synchrotron radiation. In addition, we show how it can be used to gain insight into the geometry and surface structure of the clusters. The present experiments were conducted on alkali metal halides, RbCl and CsCl, which were chosen as advantageous test cases due to their simple electronic and geometric structures. These heavy alkali metal salts provide additional clarity since the surface and bulk responses can be separated, which is not the case for clusters of lighter alkali metal salts. Computational chemical shift calculations and simple alkali halide cluster size modelling were used to interpret the experimental results

    Free silver nanoparticles doped by potassium : Work-function change in experiment and theory

    No full text
    The composition-dependent change in the work-function (WF) of binary silver-potassium nanoparticles has been studied experimentally by synchrotron-based x-ray photoelectron spectroscopy (PES) and theoretically using a microscopic jellium model of metals. The Ag-K particles with different K fractions were produced by letting a beam of preformed Ag particles pass through a volume with K vapor. The PES on a beam of individual non-supported Ag-K nanoparticles created in this way allowed a direct absolute measurement of their WF, avoiding several usual shortcomings of the method. Experimentally, the WF has been found to be very sensitive to K concentration: Already at low exposure, it decreased down to ≈2 eV - below the value of pure K. In the jellium modeling, considered for Ag-K nanoparticles, two principally different adsorption patterns were tested: without and with K diffusion. The experimental and calculation results together suggest that only efficient surface alloying of two metals, whose immiscibility was long-term textbook knowledge, could lead to the observed WF values

    Gold Oxide Nanoparticles with Variable Gold Oxidation State

    No full text
    Gold-oxide-containing nanoparticles have been produced in a range of partial to full oxidation conditions, where the nanoparticle electronic structure and stoichiometry have been characterized. Our results indicate that with the increase of the oxidation degree in these nanoparticles the gold oxidation state possibly changes from lower oxides with monoor divalent metal to the higher oxide with the trivalent gold. At intermediate oxidation conditions our observations are consistent with a radially segregated structure of such nanopaiticles-with the core containing mainly oxide and the surface covered with few monolayers of metallic gold. These results have been possible to obtain combining the vapor aggregation method for the nanoparticle fabrication and synchrotron-based photoelectron spectroscopy for their characterization. The deposition of the oxidized nanoparticles has showed that the species assigned as containing lower oxide could be preserved in the landing and then studied on a substrate for a limited time. The possible lower oxide formation in nanoparticles is discussed in connection to the enhanced catalytic activity of gold nanoparticles

    Free silver nanoparticles doped by potassium:work-function change in experiment and theory

    No full text
    Abstract The composition-dependent change in the work-function (WF) of binary silver–potassium nanoparticles has been studied experimentally by synchrotron-based x-ray photoelectron spectroscopy (PES) and theoretically using a microscopic jellium model of metals. The Ag–K particles with different K fractions were produced by letting a beam of preformed Ag particles pass through a volume with K vapor. The PES on a beam of individual non-supported Ag–K nanoparticles created in this way allowed a direct absolute measurement of their WF, avoiding several usual shortcomings of the method. Experimentally, the WF has been found to be very sensitive to K concentration: Already at low exposure, it decreased down to ≈2 eV—below the value of pure K. In the jellium modeling, considered for Ag–K nanoparticles, two principally different adsorption patterns were tested: without and with K diffusion. The experimental and calculation results together suggest that only efficient surface alloying of two metals, whose immiscibility was long-term textbook knowledge, could lead to the observed WF values

    Probing RbBr solvation in freestanding sub-2 nm water clusters

    No full text
    Concentration dependent solvation of RbBr in freestanding sub-2 nm water clusters was studied using core level photoelectron spectroscopy with synchrotron radiation. Spectral features recorded from dilute to saturated clusters indicate that either solvent shared or contact ion pairs are present in increasing amount when the concentration exceeds 2 mol kg-1. For comparison, spectra from anhydrous RbBr clusters are also presented

    Tin Oxides : Insights into Chemical States from a Nanoparticle Study

    No full text
    Tin oxides are semiconductor materials currently attracting close attention in electronics, photovoltaics, gas sensing, and catalysis. Depending on the tin oxidation state - Sn(IV), Sn(II), or intermediate - the corresponding oxide has either n- or p-type natural conductivity, ascribed to oxygen or metal deficiency in the lattice. Such crystalline imperfections severely complicate the task of establishing tin oxidation state, especially at nanoscale. In spite of the striking differences between SnO2 and SnO in their most fundamental properties, there have been enduring problems in identifying the oxide type. These problems were to a great extent caused by the controversy around the characteristic chemical shift, that is, the difference in electron binding energy of a certain core level in an oxide and its parent metal. Using in situ fabricated bare tin oxide nanoparticles, we have been able to resolve the controversy: Our photoelectron spectroscopic study on tin oxide nanoparticles shows that, in contrast to a common opinion of a close chemical shift for SnO2 and SnO, the shift value for tin(IV) oxide is, in fact, 3 times larger than that for tin(II) oxide. Moreover, our investigation of the nanoparticle valence electronic structure clarifies the question of why previously the identification of oxidation states encountered problems

    Alloying and oxidation of in situ produced core-shell Al@Yb nanoalloy particles-An "on-the-fly" study.

    No full text
    Core-shell-structured nanoalloy particles with an Al-dominated interior covered by few Yb monolayers have been fabricated using a vapor-aggregation method involving magnetron sputtering. The radially segregated structure of the Yb-Al nanoparticles has been disclosed by "on-the-fly" photoelectron spectroscopy monitoring of the nanoparticle beam in Yb 4f and Al 2p electron binding energy regions. Both, the binding energy values and the electron microscopy images taken on the deposited nanoparticles, allow estimating their dimensions to be in the 5-10 nm range. The photoelectron spectroscopy results suggest that in these nanoparticles no trivalent Yb - the typical case for the macroscopic Yb-Al alloy - is present. The oxidation of preformed Yb-Al nanoparticles was successfully attempted, leading to the appearance of divalent Yb surface oxide - in contrast to the bulk macroscopic Yb which is trivalent in the oxide. Our results suggest that at intermediate oxygen exposures "sandwich-like" nanoparticles of YbO/Yb/Al were synthesized. At higher O2 exposures, the oxygen seems to penetrate all the way to the Yb-Al interface. The results of the present study have to be considered when photonic applications of Yb-doped garnet nanoparticles are planned
    corecore