73 research outputs found

    Key role of local acetaldehyde in upper GI tract carcinogenesis

    Get PDF
    Ethanol is neither genotoxic nor mutagenic. Its first metabolite acetaldehyde, however, is a powerful local carcinogen. Point mutation in ALDH2 gene proves the causal relationship between acetaldehyde and upper digestive tract cancer in humans. Salivary acetaldehyde concentration and exposure time are the two major and quantifiable factors regulating the degree of local acetaldehyde exposure in the ideal target organ, oropharynx. Instant microbial acetaldehyde formation from alcohol represents >70% of total ethanol associated acetaldehyde exposure in the mouth. In the oropharynx and achlorhydric stomach acetaldehyde is not metabolized to safe products, instead in the presence of alcohol it accumulates in saliva and gastric juice in mutagenic concentrations. A common denominator in alcohol, tobacco and food associated upper digestive tract carcinogenesis is acetaldehyde. Epidemiological studies on upper GI tract cancer are biased, since they miss information on acetaldehyde exposure derived from alcohol and acetaldehyde present in 'non-alcoholic' beverages and food. (C) 2017 Published by Elsevier Ltd.Peer reviewe

    Local Acetaldehyde—An Essential Role in Alcohol-Related Upper Gastrointestinal Tract Carcinogenesis

    Get PDF
    The resident microbiome plays a key role in exposure of the upper gastrointestinal (GI) tract mucosa to acetaldehyde (ACH), a carcinogenic metabolite of ethanol. Poor oral health is a significant risk factor for oral and esophageal carcinogenesis and is characterized by a dysbiotic microbiome. Dysbiosis leads to increased growth of opportunistic pathogens (such as Candida yeasts) and may cause an up to 100% increase in the local ACH production, which is further modified by organ-specific expression and gene polymorphisms of ethanol-metabolizing and ACH-metabolizing enzymes. A point mutation in the aldehyde dehydrogenase 2 gene has randomized millions of alcohol consumers to markedly increased local ACH exposure via saliva and gastric juice, which is associated with a manifold risk for upper GI tract cancers. This human cancer model proves conclusively the causal relationship between ACH and upper GI tract carcinogenesis and provides novel possibilities for the quantitative assessment of ACH carcinogenicity in the human oropharynx. ACH formed from ethanol present in “non-alcoholic” beverages, fermented food, or added during food preparation forms a significant epidemiologic bias in cancer epidemiology. The same also concerns “free” ACH present in mutagenic concentrations in multiple beverages and foodstuffs. Local exposure to ACH is cumulative and can be reduced markedly both at the population and individual level. At best, a person would never consume tobacco, alcohol, or both. However, even smoking cessation and moderation of alcohol consumption are associated with a marked decrease in local ACH exposure and cancer risk, especially among established risk groups.Peer reviewe

    ALDH2-deficiency as genetic epidemiologic and biochemical model for the carcinogenicity of acetaldehyde

    Get PDF
    Humans are cumulatively exposed to acetaldehyde from various sources including alcoholic beverages, tobacco smoke, foods and beverages. The genetic-epidemiologic and biochemical evidence in ALDH2-deficient humans provides strong evidence for the causal relationship between acetaldehyde-exposure due to alcohol consumption and cancer of the upper digestive tract. The risk assessment has so far relied on thresholds based on animal toxicology with lower one-sided confidence limit of the benchmark dose values (BMDL) typically ranging between 11 and 63 mg/kg bodyweight (bw)/day dependent on species and endpoint. The animal data is problematic for regulatory toxicology for various reasons (lack in study quality, problems in animal models and appropriateness of endpoints - especially cancer - for transfer to humans). In this study, data from genetic epidemiologic and biochemical studies are reviewed. The increase in the daily exposure dose to acetaldehyde in alcohol-consuming ALDH2-deficients vs. ALDH2-actives was about twofold. The acetaldehyde increase due to ALDH2 inactivity was calculated to be 6.7 mu g/kg bw/day for heavy drinkers, which is associated with odds ratios of up to 7 for head and neck as well as oesophageal cancer. Previous animal toxicology based risk assessments may have underestimated the risk of acetaldehyde. Risk assessments of acetaldehyde need to be revised using this updated evidence. (C) 2017 The Authors. Published by Elsevier Inc.Peer reviewe

    Päihdetutkimuksesta vain osa pätevää

    Get PDF

    Pentti Karvosen opiaattiriippuvuuden hoitomalli tieteellisen näytön valossa

    Get PDF

    Rasvamaksan varhaisdiagnostiikka

    Get PDF

    Alkoholitutkimuksen haasteet

    Get PDF
    Summary: The challenges of alcohol research

    Biologisen alkoholitutkimuksen perusteos

    Get PDF
    Kirja-arvostelu: Alkoholi : biolääketieteellinen käsikirja. Toimittaneet Kalervo Kiianmaa, Mikko Salaspur

    Alkoholia, terveydeksikö?

    Get PDF
    • …
    corecore