3,698 research outputs found

    Fast Monotone Summation over Disjoint Sets

    Full text link
    We study the problem of computing an ensemble of multiple sums where the summands in each sum are indexed by subsets of size pp of an nn-element ground set. More precisely, the task is to compute, for each subset of size qq of the ground set, the sum over the values of all subsets of size pp that are disjoint from the subset of size qq. We present an arithmetic circuit that, without subtraction, solves the problem using O((np+nq)logn)O((n^p+n^q)\log n) arithmetic gates, all monotone; for constant pp, qq this is within the factor logn\log n of the optimal. The circuit design is based on viewing the summation as a "set nucleation" task and using a tree-projection approach to implement the nucleation. Applications include improved algorithms for counting heaviest kk-paths in a weighted graph, computing permanents of rectangular matrices, and dynamic feature selection in machine learning

    Information Security

    Get PDF
    The online threat landscape does not stand still. One of the best ways to understand the threats is to understand the attackers and their motives. Who are the attackers? What makes them tic? Where are they going? And what\u27s going to happen next

    37 GHz observations of a large sample of BL Lacertae objects

    Full text link
    We present 37 GHz data obtained at Metsahovi Radio Observatory in 2001 December - 2005 April for a large sample of BL Lacertae objects. We also report the mean variability indices and radio spectral indices in frequency intervals 5 - 37 GHz and 37 - 90 GHz. Approximately 34 % of the sample was detected at 37 GHz, 136 BL Lacertae objects in all. A large majority of the detected sources were low-energy BL Lacs (LBLs). The variability index values of the sample were diverse, the mean fractional variability of the sample being \Delta S_2 = 0.31. The spectral indices also varied widely, but the average radio spectrum of the sample sources is flat. Our observations show that many of the high-energy BL Lacs (HBL), which are usually considered radio-quiet, can at times be detected at 37 GHz.Comment: 12 pages, 5 figures + 5 tables. Published in Astronomical Journa

    Computationally efficient implementation of hybrid functionals in SIESTA

    Get PDF
    In this work we have implemented hybrid functionals into the SIESTA code, with the main goal to implement a fast general solver within the SIESTA framework that performs efficiently and scales linearly with increasing system size. We describe the implementation of the solver and apply it to study the properties of five insulating materials; NaCl, CaF2, CeO2, TiO2 and HfO2. We show that a systematic improvement in the basic description of the properties of these materials over standard Density Functional approaches can be obtained at a reasonable additional computational cost

    Direct enhancement of nuclear singlet order by dynamic nuclear polarization

    No full text
    Hyperpolarized singlet order is available immediately after dissolution DNP, avoiding need for additional preparation steps. We demonstrate this procedure on a sample of [1,2–13C2]pyruvic aci

    Millimeter-Wave Amplifier-Based Noise Sources in SiGe BiCMOS Technology

    Get PDF

    Deterministic Walks in Quenched Random Environments of Chaotic Maps

    Full text link
    This paper concerns the propagation of particles through a quenched random medium. In the one- and two-dimensional models considered, the local dynamics is given by expanding circle maps and hyperbolic toral automorphisms, respectively. The particle motion in both models is chaotic and found to fluctuate about a linear drift. In the proper scaling limit, the cumulative distribution function of the fluctuations converges to a Gaussian one with system dependent variance while the density function shows no convergence to any function. We have verified our analytical results using extreme precision numerical computations.Comment: 18 pages, 9 figure

    Measurement scheme of the Berry phase in superconducting circuits

    Get PDF
    We present a measurement scheme for observing the Berry phase in a flux assisted Cooper pair pump - the Cooper pair sluice. In contrast to the recent experiments, in which the sluice was employed to generate accurate current through a resistance, we consider a device in a superconducting loop. This arrangement introduces a connection between the pumped current and the Berry phase accumulated during the adiabatic pumping cycles. From the adiabaticity criterion, we derive equations for the maximum pumped current and optimize the sluice accordingly. These results apply also to the high accuracy pumping which results in a potential candidate for a metrological current standard. For measuring the pumped current, an additional Josephson junction is installed into the superconducting loop. We show in detail that the switching of this system from superconducting state into normal state as a consequence of an external current pulse through it may be employed to probe the pumped current. The experimental realization of our scheme would be the first observation of the Berry phase in superconducting circuits.Comment: 19 pages, 5 figure

    Fluctuations and scaling in creep deformation

    Get PDF
    The spatial fluctuations of deformation are studied in creep in the Andrade's power-law and the logarithmic phases, using paper samples. Measurements by the Digital Image Correlation technique show that the relative strength of the strain rate fluctuations increases with time, in both creep regimes. In the Andrade creep phase characterized by a power law decay of the strain rate ϵttθ\epsilon_t \sim t^{-\theta}, with θ0.7\theta \approx 0.7, the fluctuations obey Δϵttγ\Delta \epsilon_t \sim t^{-\gamma}, with γ0.5\gamma \approx 0.5. The local deformation follows a data collapse appropriate for an absorbing state/depinning transition. Similar behavior is found in a crystal plasticity model, with a jamming or yielding phase transition
    corecore