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We present a measurement scheme for observing the Berry phase in a flux assisted Cooper pair pump—the
Cooper pair sluice. In contrast to the recent experiments, in which the sluice was employed to generate accurate
current through a resistance, we consider a device in a superconducting loop. This arrangement introduces a
connection between the pumped current and the Berry phase accumulated during the adiabatic pumping cycles.
From the adiabaticity criterion, we derive equations for the maximum pumped current and optimize the sluice
accordingly. These results apply also to the high accuracy pumping which results in a potential candidate for
a metrological current standard. For measuring the pumped current, an additional Josephson junction is in-
stalled into the superconducting loop. We show in detail that the switching of this system from superconducting
state into normal state as a consequence of an external current pulse through it may be employed to probe the
pumped current. To our knowledge the experimental realization of our scheme would be the first observation
of the Berry phase in superconducting circuits.

DOI: 10.1103/PhysRevB.73.214523 PACS number�s�: 85.25.Cp, 03.65.Vf, 74.50.�r, 74.78.Na

I. INTRODUCTION

Adiabatic cyclic temporal evolution of any quantum sys-
tem gives rise to geometric phases depending only on which
path the system follows, not the speed of the cycle. For quan-
tum states in degenerate subspaces, these geometric phases
correspond to non-Abelian unitary operators within the sub-
space, also referred to as holonomies.1,2 In holonomic quan-
tum computation,3 these operators are of special interest
since they represent quantum gates necessary for the actual
computation. In the nondegenerate case, the geometric phase
arising from a closed cycle in the adiabatic temporal evolu-
tion is referred to as Berry phase4 corresponding to a phase
of the quantum state under adiabatic temporal evolution. In
general, the Berry phase is not directly observable and it is
observed as a phase difference between two states which
have traveled a different path during the adiabatic evolution,
as was proposed in Refs. 5 and 6 for the yet unrealized
observation of the Berry phase superconducting quantum in-
terference devices �SQUIDs�. To date, the Berry phase has
been observed,7 for example, in systems of electrons8 circu-
lating about a wire carrying electric current known as the
Aharonov-Bohm effect, and in systems of neutrons9 or
molecules10 circulating about a line of electric charge known
as the Aharonov-Casher effect.

The peculiarity of the Berry phase in a phase biased array
of Josephson junctions is that the geometric phase accumu-
lated in the ground state of the Hamiltonian is closely related
to the charge pumped through the device. This relation was
first found by Aunola et al.11 and also studied in Ref. 12.

Hence the yet unrealized observation of the Berry phase in
superconducting circuits reduces in this structure into detec-
tion of weak currents.

We consider a flux assisted Cooper pair pump, also re-
ferred to as Cooper pair sluice,13 consisting of a supercon-
ducting island separated by two SQUIDs which work as tun-
nel junctions with tunable Josephson energies. In order to
achieve large and accurate pumped currents for a novel cur-
rent standard, a voltage biased sluice was employed to pump
current in Ref. 14. In contrast, we place the sluice into a
superconducting loop, in which the device is phase biased,
and hence may be employed to observe the Berry phase.

For the measurement of the pumped current, we suggest
that an additional Josephson junction is installed in the loop
in parallel with the sluice. The pumped current modifies the
switching statistics of the whole superconducting circuit into
the normal conducting state under external current pulses.
This change is shown to suffice for quantitative measure-
ments of the pumped current. Furthermore, our measurement
scenario resembles that of the superconducting qubit
quantronium,15,16 and hence we expect it to be experimen-
tally feasible.

Recently, a more sensitive measurement scheme than the
one implemented in Saclay15,16 for quantronium was imple-
mented in Ref. 17. In this setup, the excitation and deexcita-
tion of the additional tunnel junction introduces phase shifts
to external current pulses, and hence no energy is transferred
to the measured system. Whereas this method introduces im-
provements in the visibility and contrast of the measurement,
its experimental implementation is more demanding than that
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of the Saclay measurement scheme.15,16 Moreover, we will
show that the Saclay measurement scheme is actually more
feasible in the observation of the Berry phase than in the
quantronium measurement, and hence well justified.

In the adiabatic temporal evolution of a quantum state, the
parameters of the system Hamiltonian are controlled exter-
nally. The adiabaticity criterion states that the change in the
parameters must be slow enough for the system to stay in the
same instantaneous eigenstate of the Hamiltonian. This re-
quirement limits the speed of pumping in the Cooper pair
sluice, and hence the maximum pumped current. Thus the
architecture of the sluice must be optimized in accordance
with the limitations due to adiabaticity to obtain as strong a
current signal as possible in the proposed measurement
scheme. In Ref. 13, the errors in the pumped current due to
the breaking of the adiabaticity were studied using a dynamic
approach for a fixed design of the sluice. In contrast, we
present both numerical and analytical results for the maxi-
mum pumped current with any error rate. The results are
obtained directly from the adiabaticity theorem and the spec-
tral analysis of the system Hamiltonian. In addition, we ap-
ply the results to optimize the architecture of the sluice for
both the Berry phase measurement and for high accuracy
current pumping.

The structure of this paper is the following: In Sec. II, we
present the Hamiltonian and the circuit of the Cooper pair
sluice. Section III is devoted to the study of the Berry phase
and its connection to the pumped charge. Section IV presents
the optimization methods for the design of the sluice with
respect to the adiabaticity criterion. The scheme to measure
the pumped current is considered in Sec. V. Section VI sum-
marizes and concludes the results of this paper.

II. COOPER PAIR SLUICE

The Cooper pair sluice consists of a superconducting is-
land separated by two SQUIDs. Figure 1 shows the sluice in
a superconducting loop. In the case of vanishing loop induc-
tance, the SQUIDs are equivalent to Josephson junctions
with tunable Josephson energies EJ1��1� and EJ2��2�, where
�1 and �2 denote the externally controllable magnetic fluxes
through the first and second SQUID, respectively. On the
other hand, the Coulomb energy for one excess Cooper pair
to reside on the island is EC=2e2 /C�, where C� represents
the total capacitance of the island. If one neglects the para-

sitic capacitances, the total capacitance is given by C�

=2CJ+Cg, where CJ is the capacitance of one of the identical
SQUIDs and Cg is the gate capacitance which is used to
charge the island with the gate voltage Vg. Thus the device
can be considered to be a tunable Cooper pair transistor.

The Hamiltonian of the sluice may be written in the
eigenbasis of the phase operator � as13

Ĥsl = EC�n̂ − ng�2 − EJ1��1�cos�� + �/2�

− EJ2��2�cos�� − �/2� , �1�

where n̂=−i�� is the number operator for the Cooper pairs on
the island, ng=VgCg / �2e� is the gate charge in units of 2e,
�=�1+�2 is the phase difference over the device, and the
phase on the island is given by �= ��1−�2� /2. The phase
operators � and �i are related to the phase of the order pa-
rameter describing the many-body quantum state of the su-
perconductor and should not be mixed with the Berry phase
or the phase of the ground state of the above-mentioned
Hamiltonian. Since the sluice forms a superconducting loop,
the phase � over the device is fixed by the magnetic flux �
through the loop as

� =
2� �

�0
, �2�

where �0=�� /e is the flux quantum and we have assumed
the loop inductance is negligible. Thus � may be treated as a
real number.

The current operator of the kth SQUID is defined as

Îk =
2ie

�
�n̂k,Ĥ� =

2e

�

�Ĥ

��k
, �3�

where n̂k=−i��k
is the Cooper pair number operator of the

kth SQUID. For the sluice Hamiltonian Eq. �3� reduces into

Îk =
2eEJk

�
sin��k� . �4�

Equation �3� ensures that for any states ���t�� and �	�t�� of
the system the current operator possesses the property

�t���t� � �−2e�n̂k �	�t��= ���t� � Îk �	�t��, i.e., the matrix elements
of the current operator are given by the time derivative of the
matrix elements of the charge operator. The critical current
Ick is defined as the maximum current which can flow
through the kth SQUID in the superconducting state. Hence,
Eq. �4� yields a relation

Ick =
2�EJk

�0
. �5�

Thus no Cooper pairs can tunnel through the SQUID in the
adiabatic evolution for vanishing Josephson energy, and
hence the SQUID is considered to be closed. In practice, the
SQUIDs cannot be perfectly closed due to asymmetry in the
tunnel junctions and finite loop inductance, which motivates
us to define the minimum residual value of the Josephson
energies of the SQUIDs to be EJ

res. In contrast, the maximum

FIG. 1. Circuit for the Cooper pair sluice consisting of a super-
conducting island with gate capacitance Cg, and two SQUIDs with
magnetic fluxes �1 and �2 and phase differences of the order pa-
rameter �1 and �2. The gate voltage is denoted by Vg.
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Josephson energy is denoted by EJ
max.

A typical pumping cycle of the sluice is described in
Fig. 2. In the following, we assume that the SQUIDs can be
perfectly closed, i.e., EJ

res /EJ
max=0. In the beginning of the

cycle both of the SQUIDs are closed and the gate voltage is
zero implying that the ground state of the Hamiltonian given
by Eq. �1� is an eigenstate of charge n̂ with eigenvalue zero.
Then the second SQUID is opened by increasing �2 to
�0 /2, while the first one is kept closed. The increase of the
flux �2 is executed adiabatically such that the system stays
in its ground state which is, however, not an eigenstate of
charge n̂ for finite �2. In the second step, the gate charge is
brought to integer25 ng

max, after which the second SQUID is
closed. At this middle point of the pumping cycle, the system
is again in the charge eigenstate but corresponding to eigen-
value ng

max. Since the first SQUID has been closed for the
whole evolution, we conclude that the ng

max Cooper pairs
have tunneled through the second SQUID to the island. Then
we direct the ng

max Cooper pairs through the first SQUID by
opening it, taking ng to zero, and closing it. Thus ng

max Coo-
per pairs have flowed through the sluice creating an effective
current of Ip=2eng

max/T. Although the above-mentioned ar-
guments are valid in general, we will calculate analytically
the pumped current in Sec. III for EC
EJ

max and finite EJ
res.

In analogy with a classical pump, the gate voltage in the
sluice corresponds to a piston and the SQUIDs correspond to
valves.

The maximum Josephson energy EJ
max together with the

adiabaticity criterion imposes upper bounds to the maximum
pumped current, which we consider in detail in Sec. IV. In
the adiabatic temporal evolution, the SQUIDs stay in the
superconducting state, and hence the average current through
the sluice is given by

Î =
2e

�

�Ĥsl

��
=

e

�
� �Ĥsl

��1
+

�Ĥsl

��2
	 =

Î1 + Î2

2
. �6�

The above equation yields a rather large upper bound for the
effective pumped current, i.e., the maximum critical current
Ic

max=2�EJ
max/�0 of the SQUIDs.

III. MANIFESTATION OF THE BERRY PHASE IN
COOPER PAIR PUMPS

Let us concentrate on the relation between the accumu-
lated Berry phase and the pumped current. In the case of
one-dimensional arrays of Josephson junctions, the expres-
sion of the pumped charge was first obtained in Ref. 18 and
its relation to the Berry phase was found in Ref. 11. Work
concerning not only the Berry phase but also non-Abelian
phases and their connection to the pumped charge in rather
general Josephson devices is currently in preparation.19

In Sec. III A, we consider a more general system than the
sluice presented in Fig. 1. Here we assume in excess of cy-
clic and adiabatic temporal evolution only that the average
current operator Î=2e���Ĥ� /� is well defined, i.e., that the
Cooper pair pump has only one input and one output. We
derive the connection between the pumped charge and the
Berry phase for this rather general pump. In Sec. III B, we
focus on the sluice and calculate the pumped current using a
two-state approximation which is valid in the limit EC

EJ

max.

A. Connection between the pumped charge and the
Berry phase

In adiabatic temporal evolution, an eigenstate of the sys-
tem Hamiltonian Ĥ is slowly varied with respect to a set of
real parameters 
qk�, here denoted by a vector q. The initial
state of the system at t= t0 must be an eigenstate �m ;q� of the
Hamiltonian, for which one obtains

Ĥ�q��m;q� = �m�q��m;q� , �7�

where �m�q� is the eigenenergy of the corresponding state. In
this section, we assume that the system is very accurately in
its nondegenerate eigenstate �r ;q�. For these so-called
zeroth-order assumptions, the state of the system at any time
instant is described by20

��0�t�� = ei
r�t��r;q� , �8�

where the phase 
r�t�=
dr�t�+
gr�t� is a sum of the dynamic
phase


dr = −
1

�
�

t0

t

�r;q����Ĥ�r;q����d� = −
1

�
�

t0

t

�r�q�t��d� ,

�9�

and the geometric phase

FIG. 2. Values of the externally controlled parameters EJ1��1�,
EJ2��2�, and ng of the Hamiltonian given by Eq. �1� during an
example pumping cycle of the Cooper pair sluice. The Josephson
energies EJ1 and EJ2, and the gate charge ng connected to the gate
voltage Vg=2eng /Cg are expressed in terms of their maximum val-
ues EJ

max and ng
max, respectively. The period of one pumping cycle is

denoted by T. The different phases in the pumping cycle are sepa-
rated by vertical lines. For �=EJ

res /EJ
max=0, the pumping cycle is

referred to as ideal, and hence either one of the SQUIDs is always
perfectly closed.
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gr = i�
t0

t

�r;q�������r;q����d� = �
q�t0�

q�t�

�r;q��q�r;q� · dq .

�10�

In cyclic temporal evolution, the dynamic phase is propor-
tional to the period T of the cycle, but the Berry phase,
defined by


Br = i

�

�r;q��q�r;q� · dq , �11�

only depends on the contour �= 
q�t� � t0� t�T+ t0�, accord-
ing to which the state �r ;q� is varied in the cycle.

To obtain the connection between the Berry phase and the
pumped current,18,19 we consider the leading order correc-
tions to the state vector ���t�� in the speed of the pumping
cycle �q̇�. Hence, we express it as

���t�� = �
k=0

�

Ck�t�ei
k�t��k;q� , �12�

where Ck�t� are complex numbers. By differentiating
Eq. �12� with respect to time and employing the Schrödinger
equation we obtain

Ċm�t� = − �
k�m

Ck�t�ei�
k�t�−
m�t���m;q��t�k;q� . �13�

Since we control our system such that it remains almost ex-
actly in the state �r ;q�, we may neglect all other terms in
Eq. �13� except the one with k=r. Thus we obtain for m
�r the first-order correction to the coefficients Ck as

Cm�t� = − �
t0

t

�m;q��t�r;q�ei�
r�t��−
m�t���dt�. �14�

As shown for example in Sec. IV, the absolute value of the
above coefficients Ck is proportional to �q̇� in adiabatic and
cyclic temporal evolution.

The total mean charge through the system in one pumping
cycle may be written with the help of the average current

operator Î as

Qtot = �
t0

t0+T

���t��Î���t��dt . �15�

The contribution to the total charge purely from the zeroth-
order term presented in Eq. �8� is observed to originate from
the usual supercurrent and is denoted by

Qsr = �
t0

t0+T

�r;q�t��Î�r;q�t��dt . �16�

On the other hand, the pumped charge QpªQtot−Qs as-
sumes the form

Qpr = 2 Re�
t0

t0+T ��
k�r

Ck�t��r;q�t��Î�k;q�t��ei�
k�t�−
r�t��	dt ,

�17�

where we have neglected the terms containing �Ck�2 which
vanish in the adiabatic limit. By inserting Eq. �14� into the
above equation and changing the order of the resulting inte-
grals we obtain

Qpr = − 2 Re�
k�r
�

t0

t0+T ��k;q�t����t�r;q�t���ei�
r�t��−
k�t���

� �
t�

t0+T

�r;q�t��Î�k;q�t��ei�
k�t�−
r�t��dt�dt�. �18�

In the above integral with respect to t, the integrand may be
expressed as

d

dt

i � �r;q�t��Î�k;q�t��ei�
k�t�−
r�t��/��k − �r�� + O��q̇�� .

�19�

The term O��q̇ � � in the above equation may be dropped since
it becomes negligible in the adiabatic limit compared with
the first term. Hence the pumped charge is obtained to be

Qpr = 2 � Im�
k�r
��

t0

t0+T �r;q�t��Î�k;q�t���k;q�t���t�r;q�t��
�r − �k

dt

+
Ck�t0 + T��r;q�t0 + T��Î�k;q�t0 + T��ei�
k�t0+T�−
r�t0+T��

�r − �k
�.

�20�

Since the excitation amplitudes Ck tend to zero in the adia-
batic limit, we obtain the known equation18 for the pumped
charge

Qpr = 2 � Im

�
�
k�r

�r;q�Î�k;q�
�r − �k

�k;q��q�r;q� · dq , �21�

which only depends on the contour �, according to which the
state �r ;q� traverses, not the speed �q̇� of the pumping cycle.
Although the above equation contains an integral over a
closed contour, it is also valid for open contours. Further-

more, the matrix elements of the average current operator Î

=2e��� , Ĥ� /� can be expressed as

�r;q�Î�k;q� =
2e��k − �r�

�
�r;q����k;q� , �22�

which yields together with Eq. �21�

Qpr = − 4e Im

�

�r;q����q�r;q� · dq . �23�

In the above-mentioned derivation, we have employed the
fact that �r ;q ��� �r ;q��r ;q ��q �r ;q� is real and that the basis

�k ;q�� is normalized spanning the whole configuration
space.
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Equation �23� for the pumped charge resembles Eq. �11�
except for the operator ��. This observation motivates us to
study the derivative of the Berry phase with respect to the
phase difference across the sluice � which is fixed by the
total magnetic flux � as in Eq. �2�, and hence may be treated
as a scalar variable. Hence, Eq. �11� yields

��
Br = i

�

�����r;q��†�q�r;q� + �r;q����q�r;q� · dq .

�24�

The first term on the right side of Eq. �24� may be written in
the form

����r;q��†�q�r;q� = �q�����r;q��†�r;q� − ��q���r;q��†�r;q� .

�25�

The integral of the term �q���� �r ;q��† �r ;q�� over a closed
contour � vanishes by the Stokes theorem. Thus Eq. �24�
may be recast into

��
Br = − 2 Im

�

�r;q����q�r;q� · dq , �26�

and hence the comparison of Eqs. �23� and �26� yields the
relation between the Berry phase and the pumped charge

Qp = 2e��
B. �27�

The interpretation of Qp is the average pumped charge
through the device, since it arises from the average current
operator Î. Furthermore, if the pump consists of a linear
chain of islands separated by SQUIDs, the charge conserva-
tion and cyclic temporal evolution assures that the pumped
charge through all the SQUIDs separately equal to Qp.18

Since the Berry phase is not directly observable in a one-
dimensional subspace of any quantum system, only the de-
rivative of the Berry phase with respect to the total phase
difference appears in Eq. �27�. We do not regard this property
to be a limitation in measuring the Berry phase in Josephson
circuits, but rather equate it with the fact that generally the
Berry phase is detected as a phase difference between two
orthogonal quantum states. In contrast to the Berry phase, the
charge corresponding to the dynamic phase is related to the
usual supercurrent through the device as

Qs = − 2e��
d, �28�

which is obtained by differentiating Eq. �9� with respect to �
and comparing the result with Eq. �16�.

B. Berry phase in the Cooper pair sluice

Assuming EC
EJ
max and ng� �0,1�, the state of the Coo-

per pair sluice can be described by two eigenstates �0� and
�1� of the charge operator n̂ corresponding to eigenvalues 0
and 1, respectively. We employ this approximation to dem-
onstrate the results of Sec. III A for the sluice up to linear
terms in

� ª

EJ
max

EC
. �29�

In the discussion of Sec. II, we found that the pumped charge
is 2eng

max in an ideal pumping cycle shown in Fig. 2 for
EJ

res /EJ
max=0. In contrast, we consider here SQUIDs with fi-

nite

� ª
EJ

res

EJ
max . �30�

We will, however, assume that the residual Josephson energy
is small, and hence study its effect only up to linear terms
in �.

From the expression n̂=−i�� of the number operator, we
observe that

e±i��n� = �n ± 1� , �31�

where �n� is an eigenstate of the number operator n̂ with an
eigenvalue n. Thus we decompose the trigonometric func-
tions of Eq. �1� into exponential functions and obtain the
approximate two-state Hamiltonian in the basis 
�0� , �1�� as

Ĥ2s =� ECng
2 −

EJ1

2
e−i�/2 −

EJ2

2
ei�/2

−
EJ1

2
ei�/2 −

EJ2

2
e−i�/2 EC�1 − ng�2 � .

�32�

The ground state �g� and the excited state �e� are obtained by
diagonalizing this Hamiltonian, and can be expressed as

�g� = ei�a�0� + b�1� , �e� = ei�b�0� − a�1� , �33�

where the amplitudes a and b are positive real numbers sat-
isfying a2+b2=1 and � is the relative phase difference of the
charge states. The overall constant phase of the eigenstates is
physically unobservable and can thus be chosen as in
Eq. �33�. The amplitudes a and b are obtained to be

a2 = 1 − b2 =
1

2�1 −
�

��2 + �E12/EC�2� , �34�

where we have defined �=ng−1/2 and E12

= 1
2
�EJ1

2 +EJ2
2 +2EJ1EJ2 cos �. Moreover, the phase difference

� assumes the form

� = arctan�EJ2 − EJ1

EJ1 + EJ2
tan

�

2
	 . �35�

Our aim is to compute the pumped charge utilizing
Eq. �21�, and compare it with the derivative of the Berry
phase with respect to the phase difference �. In this two-state
approximation, the sum in Eq. �21� consists of only one term

Qp2s = 2 � Im

�

�g;q�Î2�e;q�
�g − �e

�e;q��q�g;q� · dq , �36�

where we have employed the fact that all the current opera-

tors Î, Î1, and Î2 result in equal pumped charges due to the
charge conservation. The symbols �g and �e denote the ei-
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genvalues of the Hamiltonian Ĥ2s corresponding to the states
�g ;q� and �e ;q�, respectively. The parameters q are chosen to
be q= �a2 ,��. With the help of Eqs. �4� and �31�, the matrix

element of the current operator Î2 in Eq. �36� is expressed as

�g;q�Î2�e;q� =
ie

�
EJ2�ei��−�/2�b2 + e−i��−�/2�a2� . �37�

We write the gradient part in Eq. �36� as

�e;q��q�g;q� · dq = iabd� +
d�a2�
2ab

, �38�

and the energy difference as

�e − �g = 2EC
�EC

2 �2 + E12
2 . �39�

By a substitution of Eqs. �37�–�39� into Eq. �36� we obtain

Qp2s = − 2e Re

�

EJ2

E12
�ei��−�/2�b2 + e−i��−�/2�a2�

��i
E12

2 d�

4�EC
2 �2 + E12

2 �
+

1

2
d�a2�� . �40�

Since the part containing d� in the above integral vanishes as
O��2�, it is neglected in this approximation. With the same
argument we neglect the terms containing d�a2� for the parts
of the contour � in which EJ1 or EJ2 is varied. Furthermore,
we employ the identity b2=1−a2 to Eq. �40� and obtain

Qp2s = − 2e� EJ2

2E12
cos�� − �/2�d�a2� + O��2� , �41�

where the integration is over the second and fifth pumping
phase, see Fig. 2. For the second pumping phase, EJ2=EJ

max,
and up to linear order in � we have E12=EJ

max�1
+� cos �� /2 and cos��−� /2�=1. Furthermore, a2 varies
from 1−O��2� to O��2�, and hence the contribution to the
pumped charge from this domain is 2e�1−� cos ��. For the
fifth pumping phase, EJ2=EJ

res, E12�EJ
max�1+� cos �� /2, and

cos��−� /2��cos���. In this part of the cycle a2 varies from
O��2� to 1−O��2�, and hence the contribution to the pumped
charge up to linear order in � is given by −2e� cos �. Thus
the pumped charge of the sluice in the adiabatic cycle of
Fig. 2 assumes the form

Qp2s = 2e�1 − 2� cos �� + O��2� + O��2� . �42�

For vanishing residual Josephson energy, the above equation
reduces to the general result for ideal pumping cycle Qp
=2eng

max, where the number of Cooper pairs pumped in one
cycle ng

max is unity.
To show the relation between the pumped charge and the

Berry phase, we employ Eq. �11� and write


B2s = i

�

�g;q��q�g;q� · dq = − 

�

a2d� , �43�

where the vanishing integral involving the differential d�a2�
is not shown. Since the parameter � does not depend on the
gate charge, the Berry phase is accumulated only when the

Josephson energies are changed in the cycle of Fig. 2. Since
a2=O��2� for �=1/2, the only non-negligible contribution
to the integral in Eq. �43� is obtained in the first and last
pumping phase, for which a2=1+O��2�. Thus the Berry
phase can be expressed as


B2s = � − 2� sin��� + O��2� + O��2� . �44�

Indeed, Eqs. �42� and �44� demonstrate that

QP2s = 2e��
B2s, �45�

which demonstrates for the sluice the validity of the general
result given by Eq. �27�.

IV. ADIABATICITY CRITERION FOR THE COOPER
PAIR SLUICE

In the above sections, we have assumed that the sluice is
more or less perfectly in its instantaneous ground state dur-
ing the temporal evolution. However, this assumption is
strictly speaking valid only if the changes in the parameters
q of the system Hamiltonian are infinitely slow. On the other
hand, we wish to repeat the pumping cycle as fast as possible
for a given ng

max to create a detectable current. Thus a quan-
titative study of the pumping errors due to finite pumping
rate is required. In this section, we derive upper bounds for
the population of the excited states of the sluice in the spirit
of adiabatic theorem. Moreover, we apply the results to the
case ��1 for which the two-state approximation is valid,
and to the case �
1 for which we employ a perturbed har-
monic oscillator approach. In these two cases, we also derive
the maximum pumped current for small pumping error rate.

As in Sec. III A, we study a rather general quantum sys-

tem described by the Hamiltonian Ĥ�q�, parameters q, and
the instantaneous eigenbasis 
�m ;q�� defined in Eq. �7�. We
consider a representation of the state of the system given by
Eq. �12�. Since the aim of this section is to show how we can
retain the system in its ground state, i.e., �C0�t��2�1, we may
employ Eq. �14� with r=0 to describe the time evolution of
the excitation coefficients Ck. It follows from Eq. �7� that

�m;q��t�k;q� =
�m;q���tĤ��k;q�

�k�t� − �m�t�
. �46�

By insertion of Eq. �46� into Eq. �14� we obtain

Cm�t� = �
t0

t �m;q���t�Ĥ��0;q�

�m�t�� − �0�t��
ei�
m�t��−
0�t���dt�. �47�

Let us assume that we adjust the speed of the temporal evo-

lution such that �m ;q � ��tĤ� �0;q� / ��m�t�−�0�t��2 is constant
in time. Furthermore, if we neglect the geometric part of the
phase and assume that the energy separation is time indepen-
dent, we obtain an estimate

�Cm�t�� � 2 �
��m;q���tĤ��0;q��

��m�t� − �0�t��2 . �48�

Although the above assumptions may be considered to be
crude in general, they turn out to be accurate for a sluice
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Hamiltonian with at least one of the Josephson energies
much larger than the Coulomb energy EC.

Without any other assumption about the temporal evolu-
tion of the system except that it is cyclic and nearly adia-
batic, Eq. �47� yields

Cm�NT + t0� = Cm�T + t0�
1 − �m

N+1

1 − �m
, for �m � 1, �49�

where N is a positive integer and �m=ei�
m�T�−
0�T��. Since the
dynamic phase depends explicitly on the period T and the
geometric phase only on the contour �, according to which
the parameters q vary under the cyclic temporal evolution,
the period T can be chosen for example such that �m= i for a
fixed m, which implies �Cm�NT� � ��2 �Cm�T��. Thus the
probability for the sluice to be in the excited state �q ;m� is
bounded. The above discussion is, however, strictly valid
only for the mth state, whereas �k can generally be very close
to unity for k�m. In the extreme case �k=1, the amplitude
of the kth state increases linearly in time, and hence the
adiabaticity is lost if there is no dissipation in the system. To
take the dissipation into account, we estimate from Eq. �47�
that

Ċm�t� �
��m;q���tĤ��0;q��

�m�t� − �0�t�
� max

0�t�T

��m;q���tĤ��0;q��
�m�t� − �0�t�

ª �m.

�50�

For the excitation probability Pm�t�= �Cm�t��2, Eq. �50� and
addition of relaxation to the system yields

Ṗm � 4�m
�Pm�t� − �mPm�t� , �51�

where �m is the relaxation rate of the state �q ;m�.
Equation �51� yields a bound �4�m /�m�2 for the excitation
probability Pm�t�, and hence

�Cm�t�� �
4�m

�m
. �52�

From Eq. �52� we can conclude that if the relaxation is domi-
nant, i.e., �m�2��m−�0� /�, bound in Eq. �48� is valid even
though the assumption that the energy difference �m−�0 is
independent of time fails. Moreover, since �m tends to de-
crease rapidly with increasing m, it may be argued that the
excitation amplitudes of the high-lying states are suppressed
by relaxation, and hence we have to take only the low-lying
states into account if we consider an isolated quantum sys-
tem as a model for the physical system.

The errors to the pumped current arise from the leakage
current due to finite residual Josephson energy EJ

res and from
the nonadiabaticity of the temporal evolution which we con-
sider here. Since the pumped current is determined by
2eng

max/T, the optimal way to pump is to choose the integer
ng

max to be as large as possible to decrease the contribution to
the period T from opening and closing the SQUIDs, see
Fig. 2. Thus the maximum pumped current is determined
by the maximum value for ṅg limited by the criteria of
Eqs. �48� and �52� when one of the SQUIDs is fully open and
the other one is closed. Since the energy difference �e−�g
depends strongly on ng in the two state approximation valid

for ��1, the estimate in Eq. �48� does not hold. In contrast,
we adjust ṅg for all t such that

��e;q���tĤsl��g;q��
�e�t� − �g�t�

= �e, �53�

where �tĤsl=2ECṅg�ng− n̂�. Substitution of Eqs. �33�
and �39� into Eq. �53� results in a differential equation for the
gate charge

ṅg =
2�e

�
��ng − 1/2�2 + �2� , �54�

which implies together with the initial condition ng�0�=0
that

ng�t� =
1

2
+ � tan�2�et − arctan��−1/2�� . �55�

The above equation yields the period T= �� /2−2�� /�e

+O��3� and the pumped current

Ip2s = − 2e�e� 2

�
+

8�

�2	 + O��2� , �56�

where �e is to be chosen such that �e��e /4, see Eq. �52�.
Although a high damping rate is desirable in light of the
adiabaticity, it requires a strong coupling of the system to its
environment. The strong coupling has disadvantages, since it
may introduce noise to the control parameters of the Hamil-
tonian, and hence result in pumping errors.

Equation �56� shows that the pumped current increases
with �=EJ

max/EC. This observation motivates us to work in
the limit �
1 for which the phase states are accurate eigen-
states of the Hamiltonian in Eq. �1�. Since the ground state of
the system is localized at the minimum of the potential, we

may approximate the Hamiltonian Ĥsl with a Hamiltonian of
a perturbed harmonic oscillator as

Ĥpho = − EC���
2 +

EJ2

2
����2 − EJ2 + Ĥp, �57�

where ��=�−� /2, the perturbation Hamiltonian assumes

the form Ĥp=−EJ2�cos����−1+ ����2 /2�, and we have as-
sumed for simplicity that EJ1=0. Furthermore, we have ne-
glected the contribution from ng since it can be taken into
account in the unperturbed case by multiplying the wave
function by eing�� which does not introduce energy shifts or

changes into the matrix elements �k ;q � ��ng
Ĥsl� �m ;q�. By

solving the eigenstates of the unperturbed Hamiltonian

Ĥpho− Ĥp and applying perturbation theory up to any order
beyond the first it can be shown that

�m − �0

EC
= �2�m − 2−4�2m2 + 2m� + O��−1/2� , �58�

and
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�m;q���ng
Ĥsl��0;q�

EC

= �i21/4��1/4 − 2−7/2�−1/4� + O��−3/4� , for m = 1

O��−1/4� , for m � 1.

�59�

In fact the eigenstates of the unperturbed Hamiltonian are
also the eigenstates of the perturbed Hamiltonian up to
O��−1/2�, which justifies our assumption that ng may be ne-
glected also in the perturbed case. We showed in the above
discussion that the assumptions leading to the bound in
Eq. �48� are valid here. Substitution of Eqs. �58� and �59�
into Eq. �48� for m=1 yields

�C1�t�� �
� ṅg

EC
�21/4�−3/4 + 3 � 2−13/4�−5/4 + O��−7/4�� ª � .

�60�

Hence, the pumped current in this limit EJ
max
EC is obtained

from

Ipho = eṅg =
eEC�

�
�2−1/4�3/4 − 3 � 2−15/4�1/4 + O��−1/4�� ,

�61�

where we choose ��1 to assure that the system is accurately
in its ground state. The leading contribution to the current
may be expressed as

Ipho �
2−1/4e�EJ2

3/4EC
1/4

�
, �62�

where the Josephson energy EJ2=EJ
max. To justify the

accuracy of above approximations, we show in Fig. 3
the estimates for the pumped current obtained from
Eqs. �62� and �61� compared with a numerical solution, for

which the spectrum of the Hamiltonian Ĥsl was calculated,
and the gate charge ng was ramped up employing Eq. �48�

and the condition �Cm�t� � �� for all m. On the other hand,
the inset in Fig. 3 shows that dependence of the energy dif-
ference �1−�0 on ng, and hence time, weakens with increas-
ing �, which renders Eq. �48� to be valid. Thus we conclude
that Eq. �61� yields an accurate analytic expression for the
pumped current in a Cooper pair sluice for EJ

max�EC.
The calculation of the detailed dependence of the pump-

ing errors �Ip on the parameter � is beyond the scope of this
paper. Instead, we will employ an approximation

�Ip

Ip
� �2. �63�

Thus we only give order of magnitude estimates for the
maximum pumped current with a given error rate.

Figure 3 shows that to maximize the pumped current, we
should ultimately maximize EJ

max. Apart from choosing the
material of the superconductor such that its energy gap is as
large as possible and using very transparent tunnel junctions,
the only way to increase the maximum Josephson energy of
the SQUIDs is to increase the surface area of the tunnel
junctions. However, the junction capacitance increases with
the surface area, and hence the Coulomb energy EC de-
creases. On the other hand, the Coulomb energy should be
large compared with the temperature for the finite tempera-
ture effects to be minimal. Thus the attainable base tempera-
ture limits EJ

max. For standard experimental parameters, i.e.,
relatively transparent aluminum junctions, EC /kB=1 K, and
for �=0.01 we obtain currents of the order of a nanoampere.
The pumping errors are not critical for observation of the
Berry phase, and hence the parameter � can be chosen to be,
e.g., 0.1, which implies lower than 1% population in the first
excited state and a pumped current of the order of 10 nA. On
the other hand, if the sluice is used to define the current
standard, relative pumping errors should be less than 10−7

implying ��3.1�10−4. In this case, the standard parameters
still yield Ipho to be of the order of 10 pA. For superconduct-
ing niobium, the gap in the quasiparticle energy spectrum is
an order of magnitude higher than for aluminum leading to
about six times larger pumped currents than for aluminum
devices.

V. MEASUREMENT SCHEME FOR THE PUMPED
CURRENT

To observe the pumped current of a phase biased Cooper
pair sluice, we install a third tunnel junction and a dc current
source with current Idc in parallel with the sluice, as shown in
Fig. 4. The applied current Idc is assumed to be smaller than
the critical current of the system, and hence there is no volt-
age over the third junction. In addition, the capacitance of
the third junction is assumed to be large enough such that its
charging energy is negligible. Thus the third junction is es-
sentially in such an eigenstate of its phase operator �3 that
the free energy of the system is minimized. We write the free
energy of the circuit shown in Fig. 4 as

FIG. 3. Pumped current as a function of the maximum Joseph-
son energy of the SQUIDs EJ

max obtained from Eq. �62� �dotted
line�, Eq. �61� �dashed�, and full numerical solution of the system
�solid line�. The inset shows the maximum relative variation of the
energy difference �1−�0 with respect to ng as a function of the
maximum Josephson energy of the SQUIDs.
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G = Ĥsl − EJ3 cos �3 −
�Idc

2e
�3, �64�

where the second and the third terms correspond to the Jo-
sephson energy of the third junction and to the work done by
the current source, respectively. Since the system is in its
ground state in the adiabatic temporal evolution, the free
energy must achieve its minimum at �3, leading to

��3
G = EJ3 sin �3 +

�

2e
�Isl − Idc� = 0, �65�

where Isl= �EJ1 sin �1+EJ2 sin �2� /2 denotes the total aver-
age supercurrent through the sluice, and we have used the
relation 2�� /�0=�1+�2−�3. In Eq. �65�, we did not, how-
ever, include the effective current Ip=2eng

max/T through the
third junction arising from the pumping. This current has to
be subtracted from the applied dc current and thus we obtain
a relation

Ĩ ª Idc − Ip =
2eEJ3

�
sin �3 + Isl. �66�

Equation �66� shows that the pumping of Cooper pairs alters
the current through the system, which can be measured as a
shift in the critical current of the device.

In the case of ideal SQUIDs, for which �=EJ
res /EJ

max=0, it
follows from Hamiltonian of Eq. �57� that the pumped cur-
rent is independent of the total phase difference �. Thus we
obtain from Eq. �66�

Ĩ =
2eEJ3

�
sin �3, �67�

which is equivalent to the case where the sluice is replaced
by an ideal current source. Since the pumping shifts the ef-

fective current Ĩ through the third junction by Ip, the pump-
ing can be observed by switching measurements, i.e., by ap-
plying dc current pulses of duration � and different
magnitudes Idc while monitoring the voltage across the de-
vice. If the device switches to the normal conducting state, a
nonzero voltage is observed.

We estimate the switching probability in the zero tem-
perature limit as

Psw = 1 − e−� �MQT. �68�

The transition rate for the macroscopic quantum tunneling in
a weakly dissipative environment is given by

�MQT = 12�6�
�p

2�
� U/���p�e−36 U/�5��p�, �69�

where  U� 2
3EJ3�2�1− Ĩ / Ic3��3/2 and �p

��8EJ3EC3�2�1− Ĩ / Ic3��1/2 /� �Ref. 21� denote the barrier
height and the plasma frequency of the 3rd junction, respec-
tively. Figure 5 shows the switching probability given by
Eq. �68� as a function of the dc current Idc with forward and
backward pumping for pumped currents of 10 and 1 nA
which were found to be experimentally feasible in Sec. IV. In
Fig. 5�a�, we have assumed that Ic3=0.1 !A and CJ3
=200 fF. Since the sluice is also assumed to be optimized for
high Josephson energy, the additional assumption of the pa-
rameters of the third junction implies that for example in
standard shadow evaporation combined with electron beam
lithography, three-angle evaporation is to be employed to
obtain a different transparency of the third junction as com-
pared with the junctions used in the sluice. An alternative to
the three-angle evaporation is to install an additional capaci-
tor in parallel with the third junction, as realized in Refs. 15
and 16. Although these techniques in the fabrication of the
sample are very feasible, we have plotted in Fig. 5�b� the
switching probability without them, i.e., for Ic3=2 !A and
CJ3=15 fF. To detect the pumping for the parameters of
Fig. 5�b�, the relative visibility in the variation of the applied
dc current should be of the order of 0.1% for Ip=1 nA and
1% for Ip=10 nA. We note that in our current experimental
setup for other switching measurements than the proposed
one, we have detected smaller than 0.1% shifts in the current
histograms similar to the ones shown in Fig. 5. Thus an
accurate measurement of the pumped current for the param-
eters of Fig. 5�a� should be achievable.

FIG. 4. Circuit diagram for the measurement of the pumped
current through the Cooper pair sluice. The third tunnel junction
and a dc current source with current Idc is installed in parallel with
the sluice shown in Fig. 1. The phase difference of the third junc-
tion is denoted by �3.

FIG. 5. The probability of the system of Fig. 4 to switch to the
normal conducting state as a function of current Idc with 10 nA
backward pumping �dashed line�, 1 nA backward pumping �dash-
dotted line�, 1 nA forward pumping �solid line�, and 10 nA forward
pumping �dotted line�. The parameters of the third junction are cho-
sen to be �a� Ic3=0.1 !A and CJ3=200 fF, and �b� Ic3=2 !A and
CJ3=15 fF. The duration of the dc current pulse is �=100 !s.
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The correction to the shift of the critical current due to
finite residual Josephson energy EJ

res is of the order of
max�Ic1 , Ic2�� which is small compared with the pumped cur-
rent Ip for typical experimental parameters. Thus we con-
clude that the proposed measurement scheme provides a con-
venient experimental arrangement for observation of Berry
phase in superconducting circuits.

Furthermore, we note that Fig. 4 strongly resembles the
circuit used in the Saclay experiments on the artificial two-
state atom quantronium.15,16 The sluice in Fig. 4 corresponds
to the quantronium and the other part of the circuit is intro-
duced for measuring the supercurrent through it. Since the
supercurrent depends on the state of the quantronium, the
switching of the superconducting system into normal state
can be employed to observe the state of the quantronium.
Thus the supercurrent cannot be neglected as we did in the
derivation of Eq. �67�, and the exact calculation of the
switching becomes more difficult than in our case. For fur-
ther details, see Refs. 22 and 23.

VI. CONCLUSIONS

In this paper, we analyzed a phase biased Cooper pair
sluice, for which the pumped charge is closely related to the
Berry phase accumulated in one pumping cycle. We showed
that the adiabaticity requirement of the sluice does not re-
strict the pumped current to be undetectably small if the
sluice is optimized according to the results derived. In fact,
pumped currents of tens of nanoamperes might be achiev-
able. Moreover, a lower bound for the maximum pumped

current allowed by the adiabaticity criterion for relative
pumping error of 10−7 and standard experimental parameters
turned out to be of the order of 10 pA. In Ref. 13, a pumped
current of 100 pA was obtained with the error rate 10−7 using
a dynamical approach, which suggests that the lower bound
for the maximum pumped current obtained in this paper can
be increased by a more detailed derivation. Thus the sluice is
a potential candidate for a metrological current standard.24

We presented a detailed scenario for observing the
pumped current, and showed that the visibility of the current
in the proposed measurement is expected to be high. In fu-
ture work, we aim to experimentally observe the Berry phase
employing the scheme given in this paper. Although we have
neglected sources of error, e.g., decoherence in our analysis,
we expect that they are not dominant in the experimental
realization.26 In fact, our goal is only to combine two already
realized techniques: the Cooper pair pumping14 and the
switching measurement with a large Josephson junction as an
ammeter. Thus the scheme for observing the Berry phase in
superconducting circuits presented here is considered to be
very promising.
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