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Computationally efficient implementation of hybrid functionals in

SIESTA

M. H. Hakala1 and A. S. Foster1

1Department of Applied Physics, Aalto University,

P.O. Box 11000, FI-00076 Aalto, Finland

(Dated: August 3, 2013)

Abstract

In this work we have implemented hybrid functionals into the SIESTA code, with the main goal

to implement a fast general solver within the SIESTA framework that performs efficiently and

scales linearly with increasing system size. We describe the implementation of the solver and apply

it to study the properties of five insulating materials; NaCl, CaF2, CeO2, TiO2 and HfO2. We show

that a systematic improvement in the basic description of the properties of these materials over

standard Density Functional approaches can be obtained at a reasonable additional computational

cost.
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I. INTRODUCTION

Since its development1, Density Functional Theory (DFT) has increasingly come to dom-

inate in computational solid-state physics, providing an accurate framework for interpreting

and predicting materials properties. However, the standard Local Density Approximation

(LDA)2 and the Generalized Gradient Approximation (GGA)3,4 have proved to be flawed

in more complex systems. For example, the locality of the correlation in LDA and GGA

functionals means that non-local van der Waals interactions are treated incorrectly5 and

must be explicitly added5–12. Similarly, the lack of derivative discontinuities and the spu-

rious self interaction in standard LDA and GGA functionals means that band gaps are, in

general, underestimated. Including even a small fraction of exact exchange using a ”hybrid”

functional, including non-local contributions, partly corrects for this13–15, and also provides

more accurate geometries and energies for many molecules16–19, and bulk structures includ-

ing improved band gaps20–28. Such hybrid functionals also give a better description of charge

localization29 and magnetic coupling30.

The SIESTA methodology and implementation31–33 has become one of the most widely

used DFT-based codes in solid-state physics. Implementing a linear combination of strictly

confined numerical atomic orbitals, the enforcement of spatial locality allows the construc-

tion of the Hamilonian to be linear-scaling. By varying the degree of confinement it is

possible to trade precision for computational speed. When combined with methods that

enforce the solution of the Kohn-Sham to yield localized Wannier functions, it is therefore

possible to achieve linear-scaling in both computational cost and memory. Recently, efforts

have focused on adding more functionality to the code33, while maintaining its overall ef-

ficiency. In an effort to also offer the capability of hybrid functionals in SIESTA, we have

added both screened and unscreened versions of Hartree-Fock solver into the code, allowing

us to run calculations with a greatly improved treatment of electron exchange. Our imple-

mentation includes a general input structure for the contribution of Hartree-Fock exchange,

so that the user can choose the functional most relevant to the science and system size e.g.

PBE034, B3LYP35. Large calculations can be facilitated by the use of the screened hybrid

functionals, such as HSE16 and HSE0636. To validate the solver we have calculated several

semiconducting/insulating bulk materials and compared the electronic properties calculated

by standard GGA and hybrid functionals.
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II. THEORY

The hybrid approach to the generation of more accurate functionals was originally in-

troduced by Becke in 199337. This approach relies on the adiabatic connection method38

wherein a fraction of the local or semi-local exchange within a standard functional is replaced

by a proportion of non-local Hartree-Fock exchange:

EHF
X = −

1

2

∑
k,l

∫
dr1dr2ψ

∗
k(r1)ψ

∗
l (r2)(

1

r12
)ψk(r2)ψl(r1). (1)

For large-scale calculations, the previous equation rapidly becomes a computational bot-

tleneck due to the scaling with the number of basis functions and prefactor for evaluating

each term. Screened hybrid functionals, on the other hand, are able to incorporate Hartree-

Fock exchange into bulk materials with significantly lower computational requirements. In

addition, screened hybrid functionals lack certain undesirable features experienced with the

full Hartree-Fock exchange. Without the screening the exchange hole has a tail contri-

bution that is not cancelled out by the local correlation in these functionals. The use of

screening reduces the long-range tail of the exchange yielding a better description for the

total exchange-correlation hole. Furthermore, for some materials full Hartree-Fock exchange

overestimates the optical gap. As the screening lowers the amount of exchange, a better

description of the optical gap for these materials is also gained. An in-depth discussion on

the properties of the orbital dependent functionals is provided in Ref.14.

With screened functionals the Hartree-Fock integral kernel of 1/r is split into short-range

(SR) and long-range (LR) parts and only the short-range part is included in the functional.

In principle this division is arbitrary, but the error function below has the benefit of being

easily implemented:

1

r12
=
erfc(ωr12)

r12︸ ︷︷ ︸
SR

+
erf(ωr12)

r12︸ ︷︷ ︸
LR

. (2)

The parameter ω is a screening parameter and a positive real number. For given function-

als this is a fixed parameter obtained usually via fitting. We are using value ω = 0.15Bohr−1

in our calculations, and we are effectively using the HSE06 functional16,36, given by:

EHSE06
XC = 0.75EPBE−SR

X + 0.25EHF−SR
X + EPBE−LR

X + EPBE
C . (3)
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Here also the exchange part of the GGA functional (in this case we use PBE39) is screened.

This means that the exchange hole of the functional is screened with:

JωPBE,SR(ρ, s, y) = JPBE(ρ, s, y)× erfc(
ωy

kF
). (4)

Finally, though not in scope of this paper, we note that certain other functionals can

be constructed by taking the LC part of exchange into account. These are for instance

non-local van der Waals density functionals vdW-DF-0940 and LCS-VV0941.

III. METHODS

A. The SIESTA method

SIESTA31,32 is a real space linear combination of atomic orbitals basis code, implement-

ing DFT within the generalized gradient approximation. Core electrons are represented by

norm-conserving Troullier-Martins pseudopotentials. It uses strictly confined numerical or-

bitals with flexibility with respect to the cutoff radii, number of split-zeta basis functions,

and number of polarization orbitals used in the calculations. In SIESTA, usually only a

small number of basis functions per atom are required and these orbitals are of finite spatial

extent, leading to a sparse Hamiltonian and overlap matrix. Thus SIESTA is relatively fast

and makes calculations of hundreds or even thousands of atoms feasible by trading numeri-

cal precision for computational speed. Furthermore, because of the localized basis set, there

is little extra cost associated with the presence of vacuum in the system and non-periodic

boundary conditions are possible. Hence, SIESTA represents an especially efficient choice

for systems such as surfaces.

In the standard SIESTA methodology, the two-centre Hamiltonian matrix elements are

calculated using a 1-D FFT convolution of the numerical orbitals on a radial grid. The

remaining terms, such as the Hartree and exchange-correlation energies, are evaluated using

an auxiliary basis set. Here the electron density is constructed on a uniform Cartesian mesh

where there are non-zero orbital contributions. The Hartree potential can then be computed

either by a Fast Fourier Transform (FFT) or via hierarchical multigrid methods if formal

linear-scaling or open boundary conditions are required. Because a standard calculation

only requires a single forward and backward FFT per SCF cycle, the deviation of this algo-
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rithm from linear-scaling has negligible consequence for the total computational time within

a calculation. The use of the same approach to the solution of the Poisson equation could be

employed in the calculation of Hartree-Fock exchange integrals. However, because each inte-

gral has to be performed separately due to the non-local nature of the potential, the scaling

of the Poisson solver becomes an important consideration for a linear-scaling methodology.

Hence, it is important that the use of global FFTs be avoided for the calculation of the

Hartree-Fock exchange terms.

B. Fock matrix calculation

For practical calculations, the Fock matrix is represented via basis functions φλ(r); an

atomic orbital basis in our case. This leads to the following expressions for that define the

Hartree-Fock energy:

EHF
X = −

1

2

∑
μ,ν

PμνKμ,ν (5)

Kμν =
∑
λ,σ

Pλσ(μν|λσ) (6)

(μν|λσ) =

∫
dr1dr2φμ(r1)φλ(r1)g(r12)φν(r2)φσ(r2), (7)

where K is the Fock matrix and the integral in Eq. 7 are named as electron repulsion inte-

grals (ERI’s). The interaction potential g(r12) in these equations is commonly the standard

Coulombic 1/r. However, this can also be divided into a short-range (SR) and long-range

(LR) parts as mentioned previously.

1. ERI calculation

The evaluation of the electron repulsion integrals (ERIs) is the key to the efficient imple-

mentation of Hartree-Fock exchange. This problem has been extensively addressed in the

context of Gaussian basis functions42,43 including for the case of periodic solids as imple-

mented in the CRYSTAL program44. Because of the proliferation of basis function types

within the solid-state density functional theory there has been increasing recent interest as to
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how to perform these integrals for more general functions, including planewaves. Two studies

have already considered the case of numerical atomic orbitals45,46 as general approach.

In the present work we take an alternative approach to try to achieve efficient calculation

of the ERIs for numerical atomic orbitals. Rather than attempting to perform the expensive

numerical integration required for a general radial function on a grid, we introduce a second

auxiliary fitting basis set to express the PAOs in terms of analytic functions. Given the

efficient algorithms that have already been developed for Gaussian basis functions, we chose

to expand the PAOs as a linear-combination of such functions. The electron repulsion

integrals can then be computed using RYS quadrature47.

For accuracy and convergence it is essential to minimize the mismatch error especially at

the cutoff radius of the orbitals. For computational expediency, we fit the tail part of the

SIESTA orbital with a single Gaussian and only use more contractions closer to the atomic

center. This reduces the number of contractions for most of the integrals. Furthermore, to

speed up calculations we consider the 8-fold permutational symmetry, where the following

integrals are equal and thus only one instance needs to be calculated:

(μν|λσ) = (μν|σλ) = (νμ|λσ) = (νμ|σλ) = (λσ|μν) = (σλ|μν) = (λσ|νμ) = (σλ|νμ). (8)

For the forces we have modified this algorithm to include also gradients of the integrals.

All the gradients are done analytically within the RYS quadrature. With Gaussians and

RYS quadrature it is rather easy to split the 1/r Coulombic kernel into SR and LR parts

with the error function as described in Eq. 2. Thus the same algorithm can be used with

all three kernels and in our implementation we provide interface for all of them.

2. Direct integral screening

Efficient screening of integrals is a key component in making the calculations fast. Here

user provided tolerance controls which integrals are neglected. We have found that the

value of 10−6 Ry is generally good value for the tolerance, but this should be tuned for

each system separately. Especially with screened SR-kernels, prescreening can reduce the

number of calculated integrals by several orders of magnitude. We are using two types of

direct screening within our implementation. The Schwarz inequality gives an upper bound
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to the ERI with respect to distance of the individual shell pairs:

|(μν|λσ)|2 ≤ |(μν|μν)||(λσ|λσ)|. (9)

Multipole type screening, referred to as 1DS in Ref.48, gives an approximation to the

SR-ERI with respect to the distance of the two charge distributions:

(μν|λσ)SR ≈
L∑
l=0

L
′∑

j=0

q
μν
l (P)qλσj (Q)

C̃l+j(RPQ)

R
(l+j)
PQ

. (10)

Here q are multipole terms, C̃ the multipole coefficients and RPQ the distance between

centers of charge distributions P and Q.

3. DM based integral screening

To further screen integrals in order to gain speed-up one can take the density matrix (DM)

elements into consideration. This can be combined into both Schwarz and 1DS screening

methods. For semiconducting and insulating systems the density matrix has been shown49,50

to decay exponentially as lim|r1−r2|→∞ ρ(r1, r2) ∝ exp(−
√
Egap|r1 − r2|), where Egap the

energy difference between the highest occupied and lowest unoccupied band or molecular

orbital. Taking this into account when studying this type of material, the two previously

mentioned screening techniques can be further enhanced as:

Pmax × Eschwarz,1DS ≤ Etolerance, (11)

where

Pmax = max{|Pμλ|, |Pμσ|, |Pνλ|, |Pνσ|}. (12)

As during the SCF iterations, the density matrix changes, it would be desirable to have a

fixed DM for screening to keep the procedure stable. For this we are using a PBE generated

DM. PBE is generally known to underestimate the gap. Thus, it yields a slower decaying

DM compared to hybrids. As PBE generally gives a good estimate for DM this is good and

conservative approach to include DM based screening.

For SIESTA one must note the fact that in SIESTA the density matrix has the sparsity

pattern of Hamiltonian. Here only terms with overlapping (direct and via pseudopotential)
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basis functions are considered. As exchange is non-local property, may this sparsity pattern

lead to difficulties in the convergence or in the worst case scenario to poorer accuracy. With

semiconducting and insulating materials, where the charge is more localized, this in general

does not have a significant role. Furthermore with HSE functional the exchange operator is

screened again alleviating the undesirable affects of density matrix sparsity pattern. Still,

one must pay extra care in choosing and testing proper basis functions for given materials

when exchange is involved.

4. Storage and load balancing

As nowadays the clusters and supercomputers are more available the emphasis has been

in parallel efficiency. One significant issue is the load balancing. We are dividing the

orbital pairs into a groups called bins and then balance those over the nodes. For the first

calculation the bins are divided evenly over the nodes giving rather good initial balancing.

If the integrals are calculated on the fly, the dividing is dynamically balanced. This way the

exchange calculation scales linearly with respect to the number of CPU’s even for a modest

size systems and over a huge amount of CPU’s.

In practical calculations, if possible, it is most efficient to store the integrals. Nowadays

in the supercomputers there are usually hundreds of gigabytes of memory available and also

parallel/shared disk systems making the IO relatively fast. We provide options to store the

integrals either to the memory or to the disk. We only store the significant integrals and using

mentioned screening techniques is essential to reduce the required storage. With the memory

we are storing the whole sparse K matrix at every node. This is not ideal, but removes the

tedious communication of single integrals between nodes during the integral evaluation.

With this approach we make the most intensive part of the calculation “embarrassingly

parallel“. One approach to reduce the memory consumption is to use hybrid parallelization

of OpenMP/MPI. Thus, for example, on a quad-core processor there is no need to store

matrices four times, but instead just once.

If the memory is an issue there is also a way to use parallel IO to store the compressed bins

into the disk system. We implemented the approach where every node is a reader/writer. In a

supercomputer with a parallel filesystem this is the most efficient approach. Also in addition

to parallel calculations we provide a way to distribute the bins over a grid/distributed system.
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This distributed computing can be used to store the integrals to disk, then later merged

together to perform a SCF cycle without the expensive integral evaluation.

5. Fitting SIESTA orbitals

When benchmarking calculations, we have observed that the quality of the fitted orbitals

sometimes play significant role in the convergence. In addition confining the orbitals may

have a minor effect to the accuracy, but provide a significant speedup. Also the accuracy

of the density matrix and good initial geometry are essential if the convergence becomes an

issue. For the latter two, one can always increase the accuracy by k-point sampling and grid

cutoff, and for the geometry a PBE relaxed system is a good starting point.

The origin of the problems with respect to basis set in SIESTA is twofold. First, there is

the mismatch error. SIESTA uses numerical orbitals (for the radial part) that go sharply to

zero at the specified cutoff radius. These cannot be fitted accurately with a small number

(1-4) of Gaussian contractions. Instead, we fit these orbitals first with a few Gaussians

and choose the amount that catches the qualitative behaviour of the given radial function.

Then we take the numerical values from the fitting function and feed those values back to

SIESTA. Thus we completely remove the mismatch error below the cutoff. This treatment

does not change the radial part of the basis functions significantly and does not affect the

results between the original and fitted basis.

The second issue is the smooth decay of the K matrix elements. The sparsity pattern

of SIESTA is determined by the cutoff radius of each orbital. It would be desirable that

for very small overlap, the K matrix elements would also be vanishing. Indeed if the fitting

would be strictly zero after the cutoff radius for the auxiliary basis this would be the case.

But as the Gaussians decay exponentially it is possible that the tail parts of the auxiliary

basis functions are yielding too large K matrix values. This effect is small and gives only

minimal contribution to the total energy, but it may cause some numerical stability issues.

To overcome this problem we increase the cutoff radius for those orbitals where the mismatch

error is large around the cutoff radius. Thus as the Gaussians decay exponentially a small

increase in the cutoff radius makes the fitting error vanish. The price to pay is that now the

sparsity pattern increases making the whole calculation more expensive.

Finally it should be noted that tuning the basis set becomes even more important when
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using hybrid functionals in SIESTA. In addition to the convergence issues, one can get

clear speedup from more localized basis functions. Naturally the more localized the basis

functions are, the greater is the effect of screening making calculation of the integrals much

faster.

IV. RESULTS

A. Setup

In order to test the capabilities of our hybrid implementation in SIESTA, we have chosen

to calculate five different bulk materials with different electronic properties. These systems

were CaF2, CeO2, NaCl, TiO2 (rutile and anatase phases) and HfO2 (monoclinic, tetragonal

and cubic phases). This set of systems ranges from narrow to wide gap insulators, and

includes a variety of lattice structures and valence character.

In the calculations core electrons are represented by PBE generated norm-conserving

pseudopotentials using standard Troullier-Martins parametrization. We note that a few

studies show minor differences arising when using non-fitted pseudopotentials with exact

exchange functionals51,52, but in general those differences are rather small. In addition we

are not using exact exchange, but only a fraction of screened exchange making the choice

of PBE pseudopotentials reasonable. The basis set for the combined systems was optimized

for PBE to provide fast and yet relatively accurate results for ground state properties. The

used basis set was double ζ with polarization for Na(3s1), Cl(3p5), Hf(6s2), O(2p4), Ca(4s2),

Ce(6s2), Ti(4s2,3d2) and double ζ for Cl (3s2), Hf(5d2), O(2s2), Ce(5s2, 5p6, 4f2), F(2s2,2p5)

and single ζ for Ce(5d0). All systems were calculated with a k-point mesh of 7 × 7 × 7, a

mesh cutoff of 250 Ry and an energy shift of 5 meV. This was sufficient to converge the

lattice structures to a high accuracy.

In order to test the accuracy of our results and the hybrid implementation in SIESTA

we repeated the calculations using the VASP code53,54. It uses a plane wave basis and the

projector augmented wave method55–57 to treat the valence and core states, respectively. The

calculations were fully converged using an energy cutoff of 400 eV and a Γ-point centered

4 × 4 × 4 grid to sample the Brillouin zone. As a final benchmark, we also repeated our

calculations using the PBESol functional58 implemented in SIESTA.
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Lattice constant (Å) Band gap (eV)

System PBEa PBEb HSEa HSEb PBEsola Exp. PBEa PBEb HSEa HSEb PBEsola Exp.

CaF2 5.60 5.51, 5.5059 5.59 5.47 5.56 5.4560 6.7 7.4, 8.059 8.8 9.4 6.6 12.161

CeO2 5.43 5.46, 5.4362 5.36 5.40 5.36 5.4163,64 5.9 6.6 6.2 7.6 6.065

NaCl 5.69 5.70 5.67 5.66 5.60 5.6366 5.0 5.0 6.2 6.2 5.0 9.067

TiO2 a=3.90 3.81 3.89 3.78 3.85 3.7868 1.7 2.4 3.3 3.9 3.269

anatase c=9.78 9.68 9.75 9.57 9.74 9.5168

TiO2 a=4.70 4.64, 4.6570 4.69 4.59 4.65 4.5971 1.5 1.8, 1.772 3.1 3.1 1.5 3.073

rutile c=3.03 2.97, 2.9770 3.02 2.96 2.99 2.9671

HfO2 cubic a=5.14 5.08, 5.0774 5.13 5.04 5.15 5.0875 3.3 3.8, 3.874 5.3 5.2

HfO2 a=5.12 5.08, 5.0674 5.11 5.04 5.13 5.1576 4.1 4.7, 4.674 6.0 6.2

tetragonal c=5.24 5.24, 5.1874 5.21 5.16 5.23 5.2976

HfO2 a=5.16 5.1374 5.19 5.13 5.1277 3.6 4.174 5.1 5.778

monoclinic b=5.23 5.1974 5.28 5.30 5.1777

c=5.38 5.3174 5.33 5.27 5.3077

β=98.8o 98.8o74 98.8o 98.5o 99.2o77

TABLE I: Lattice constant and band gap values for all calculated systems using SIESTAa and

VASPb. Unreferenced values are calculated in this work. Note that the CeO2 gap is calculated

ignoring the 4f states in the gap, as is the usual convention.

For all of the systems we have calculated lattice constant parameters and approximated

the fundamental gap via the difference between the highest occupied and lowest unoccupied

band energies. In all our hybrid calculations we used the HSE0636 with screening parameter

ω = 0.15Bohr−1.

B. Geometry and electronic structure

In Table I we compare the calculated lattice parameters and band gaps for PBE, PBESol

and HSE06 functionals with experimental values. In general, as expected for a GGA func-

tional, PBE itself already gives good agreement with experimental lattice structures for these

systems, and PBESol slightly improves the agreement in nearly all cases. HSE06 provides

at least as good agreement, if not better, but the differences are not significant for any of

the systems studied. HSE06 also maintains the hierarchy of phases for TiO2 and HfO2 seen

for with PBE, with rutile and monoclinic phases predicted as the most stable respectively.

When we compare the band gaps in Table I and Density of States in Fig. I between

different systems, we clearly see significant differences. As discussed earlier, the exchange

and correlation approximations used in the PBE functional means that it underestimates the
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experimental band gap in every case (and this is effectively unchanged in PBESol), by up to

around half in the case of TiO2, CaF2 and NaCl. The HSE06 functional and the inclusion

of part of exact exchange corrects this for all systems, although the correction is certainly

not complete. For TiO2, in both phases, the band gap is now in very good agreement with

experiment, and for HfO2 the HSE06 gap is much closer to experiment, but for the wider

gap materials, the HSE06 gap is still a significant underestimation, reflecting the fact that

the treatment of exchange is still an approximation26.

For CeO2, the difference in band gap between PBE and HSE06 is quite small as PBE

already gives a reasonable value, in agreement with previous studies79. However, the 4f -

states in the gap, critical in studies of ceria oxidation, are demonstrated to be much closer

to the conduction band in HSE06 (see Fig. 1), and this is important when studying defects

in ceria and related charge localization80,81.

FIG. 1: (Color online) Density of the states for TiO2 in the anatase and rutile phases, CeO2, CaF2,

NaCl and HfO2 in the monoclinic phase. In the graphs the upper curve is HSE06 and lower PBE.

The energies are in eV and the Fermi energy is shifted to zero.
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C. Scaling

Although the overall scaling of the SIESTA code is certainly a limiting factor in any calcu-

lations, it is important to note that for hybrid calculations most of time is spent in the Fock

solver. This scales linearly, making hybrid calculations very efficient for massively parallel

architectures. In order to demonstrate its capabilities for massively parallel calculations, we

take as test systems bulk CaF2, containing a with 97 and 291 atoms.

The basis set is the same as in previous sections, but, in order to test the system at very

high accuracy, we have used an integral cutoff of 10−6, a mesh corresponding to energy cutoff

of 400 Ry and 5× 5 k-point mesh sampling.

First, comparing the basic wall clock time of a run on 8 processors, we see that our

hybrid functional is 4.85 times slower than the same system run with PBE. This number

can change compared to used basis, system parameters and system properties and should

only be considered as a qualitative number specific to this system. However, it does show

that hybrid calculations can be run at computational cost little higher than conventional

DFT within SIESTA.

In order to study the parallel scaling, we compare the properties of SR-HFX solver vs. the

PBE solver. The scaling calculations were done using a distributed cluster with Infiniband

interconnects and with SIESTA version 2.0.2. Fig. 2 shows that the SR-HFX solver scales

almost ideally up to 128 processors, while the PBE solver does not scale that well after 16

processors. Though hybrid solver outperforms PBE, it is important to note that the overall

scaling of SIESTA code is not improved, and full linear scaling can only be achieved by more

fundamental changes in the load distribution in future versions of SIESTA.

FIG. 2: Comparison of the implemented SR-HF solver and PBE with number of CPU’s. For the

97 atom system the calculations started from 4 CPU’s and thus corresponding speedups refer to

this value. Similarly for 291 atom the initial setup was 32 CPU’s and higher speedups refer to this

value.
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V. SUMMARY

We have implemented a general solver for performing hybrid functional calculations into

the SIESTA code. The implementation provides access to improved functionals such as

HSE06, PBE0 and B3LYP, at reasonable cost above conventional DFT calculations. By the

use of screening and appropriate basis optimization it is possible to run hybrid calculations

at less than five time the cost of a GGA calculation. In general, extra care is needed when

setting up the basis sets in comparison to standard SIESTA calculations, but otherwise the

method is reliable and the results are reproducible. We have validated the implementation

by calculating the geometry and electronic structure of a variety of bulk insulating materials.

Our results are in good agreement with previous studies, and demonstrate the improvement

offered by hybrid functionals in accurate description of electronic structure. In combination

with future developments in parallel performance of the SIESTA code in general, this will aid

the maintenance of SIESTA’s position as one of the leading methods for solid state studies.
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