172 research outputs found

    A high-throughput splinkerette-PCR method for the isolation and sequencing of retroviral insertion sites

    No full text
    Insertional mutagens such as viruses and transposons are a useful tool for performing forward genetic screens in mice to discover cancer genes. These screens are most effective when performed using hundreds of mice, however until recently a major limitation to performing screens on this scale has been the cost effective isolation and sequencing of insertion sites. Here we present a method for the high-throughput isolation of insertion sites using a highly efficient splinkerette-PCR method coupled with capillary or 454 sequencing. This protocol includes a description of the procedure for DNA isolation, DNA digestion, linker or splinkerette ligation, primary and secondary PCR amplification, and sequencing. This method, which takes about 1 week to perform, has allowed us to isolate hundreds of thousands of insertion sites from mouse tumours and, unlike other methods, has been specifically optimised for the isolation of insertion sites generated with the murine leukaemia virus (MuLV), and can easily be performed in 96 well plate format for the efficient multiplex isolation of insertion sites

    Generation and genetic repair of two human induced pluripotent cell lines from patients with Epidermolysis Bullosa simplex and dilated cardiomyopathy associated with a heterozygous mutation in the translation initiation codon of KLHL24

    Get PDF
    Fibroblasts from two patients carrying a heterozygous mutation in the translation initiation codon (c.2 T > G) of the kelch-like protein 24 (KLHL24) gene were used to generate human induced pluripotent stem cells (hiPSCs), using non-integrating Sendai virus to deliver reprogramming factors. CRISPR-Cas9 editing was used for genetic correction of the mutation in the patient-hiPSCs. The top-predicted off-target sites were not altered. Patient and isogenic hiPSCs showed typical morphology, expressed pluripotency-associated markers, had the capacity for in vitro differentiation into the three germ layers and displayed a normal karyotype. These isogenic pairs will enable in vitro modelling of KLHL24-associated heart and skin conditions.Therapeutic cell differentiatio

    iPSC-Based Modeling of RAG2 Severe Combined Immunodeficiency Reveals Multiple T Cell Developmental Arrests

    Get PDF
    RAG2 severe combined immune deficiency (RAG2-SCID) is a lethal disorder caused by the absence of functional T and B cells due to a differentiation block. Here, we generated induced pluripotent stem cells (iPSCs) from a RAG2-SCID patient to study the nature of the T cell developmental blockade. We observed a strongly reduced capacity to differentiate at every investigated stage of T cell development, from early CD7−CD5− to CD4+CD8+. The impaired differentiation was accompanied by an increase in CD7−CD56+CD33+ natural killer (NK) cell-like cells. T cell receptor D rearrangements were completely absent in RAG2SCID cells, whereas the rare T cell receptor B rearrangements were likely the result of illegitimate rearrangements. Repair of RAG2 restored the capacity to induce T cell receptor rearrangements, normalized T cell development, and corrected the NK cell-like phenotype. In conclusion, we succeeded in generating an iPSC-based RAG2-SCID model, which enabled the identification of previously unrecognized disorder-related T cell developmental roadblocks.In this article, Mikkers

    Recent translational research: Oncogene discovery by insertional mutagenesis gets a new boost

    Get PDF
    Knowledge of the genes and genetic pathways involved in onco-genesis is essential if we are to identify novel targets for cancer therapy. Insertional mutagenesis in mouse models is among the most efficient tools to detect novel cancer genes. Retrovirus-mediated insertional mutagenesis received a tremendous boost by the availability of the mouse genome sequence and new PCR methods. Application of such advances were limited to lympho-magenesis but are now also being applied to mammary tumourigenesis. Novel transposons that allow insertional muta-genesis studies to be conducted in tumors of any mouse tissue may give cancer gene discovery a further boost

    Identifying client characteristics to predict homecare use more accurately:a Delphi-study involving nurses and homecare purchasing specialists

    Get PDF
    BackgroundCase-mix based prospective payment of homecare is being implemented in several countries to work towards more efficient and client-centred homecare. However, existing models can only explain a limited part of variance in homecare use, due to their reliance on health- and function-related client data. It is unclear which predictors could improve predictive power of existing case-mix models. The aim of this study was therefore to identify relevant predictors of homecare use by utilizing the expertise of district nurses and health insurers.MethodsWe conducted a two-round Delphi-study according to the RAND/UCLA Appropriateness Method. In the first round, participants assessed the relevance of eleven client characteristics that are commonly included in existing case-mix models for predicting homecare use, using a 9-Point Likert scale. Furthermore, participants were also allowed to suggest missing characteristics that they considered relevant. These items were grouped and a selection of the most relevant items was made. In the second round, after an expert panel meeting, participants re-assessed relevance of pre-existing characteristics that were assessed uncertain and of eleven suggested client characteristics. In both rounds, median and inter-quartile ranges were calculated to determine relevance.ResultsTwenty-two participants (16 district nurses and 6 insurers) suggested 53 unique client characteristics (grouped from 142 characteristics initially). In the second round, relevance of the client characteristics was assessed by 12 nurses and 5 health insurers. Of a total of 22 characteristics, 10 client characteristics were assessed as being relevant and 12 as uncertain. None was found irrelevant for predicting homecare use. Most of the client characteristics from the category ‘Daily functioning’ were assessed as uncertain. Client characteristics in other categories – i.e. ‘Physical health status’, ‘Mental health status and behaviour’, ‘Health literacy’, ‘Social environment and network’, and ‘Other’ – were more frequently considered relevant.ConclusionAccording to district nurses and health insurers, homecare use could be predicted better by including other more holistic predictors in case-mix classification, such as on mental functioning and social network. The challenge remains, however, to operationalize the new characteristics and keep stakeholders on board when developing and implementing case-mix classification for homecare prospective payment

    Crystal Structure of the PIM2 Kinase in Complex with an Organoruthenium Inhibitor

    Get PDF
    BACKGROUND: The serine/threonine kinase PIM2 is highly expressed in human leukemia and lymphomas and has been shown to positively regulate survival and proliferation of tumor cells. Its diverse ATP site makes PIM2 a promising target for the development of anticancer agents. To date our knowledge of catalytic domain structures of the PIM kinase family is limited to PIM1 which has been extensively studied and which shares about 50% sequence identity with PIM2. PRINCIPAL FINDINGS: Here we determined the crystal structure of PIM2 in complex with an organoruthenium complex (inhibition in sub-nanomolar level). Due to its extraordinary shape complementarity this stable organometallic compound is a highly potent inhibitor of PIM kinases. SIGNIFICANCE: The structure of PIM2 revealed several differences to PIM1 which may be explored further to generate isoform selective inhibitors. It has also demonstrated how an organometallic inhibitor can be adapted to the binding site of protein kinases to generate highly potent inhibitors. ENHANCED VERSION: This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1

    Orphan receptor GPR110, an oncogene overexpressed in lung and prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>GPR110 is an orphan G protein-coupled receptor--a receptor without a known ligand, a known signaling pathway, or a known function. Despite the lack of information, one can assume that orphan receptors have important biological roles. In a retroviral insertion mutagenesis screen in the mouse, we identified GPR110 as an oncogene. This prompted us to study the potential isoforms that can be gleaned from known GPR110 transcripts, and the expression of these isoforms in normal and transformed human tissues.</p> <p>Methods</p> <p>Various epitope-tagged isoforms of GPR110 were expressed in cell lines and assayed by western blotting to determine cleavage, surface localization, and secretion patterns. GPR110 transcript and protein levels were measured in lung and prostate cancer cell lines and clinical samples, respectively, by quantitative PCR and immunohistochemistry.</p> <p>Results</p> <p>We found four potential splice variants of GPR110. Of these variants, we confirmed three as being expressed as proteins on the cell surface. Isoform 1 is the canonical form, with a molecular mass of about 100 kD. Isoforms 2 and 3 are truncated products of isoform 1, and are 25 and 23 kD, respectively. These truncated isoforms lack the seven-span transmembrane domain characteristic of GPR proteins and thus are not likely to be membrane anchored; indeed, isoform 2 can be secreted. Compared with the median gene expression of ~200 selected genes, GPR110 expression was low in most tissues. However, it had higher than average gene expression in normal kidney tissue and in prostate tissues originating from older donors. Although identified as an oncogene in murine T lymphomas, GPR110 is greatly overexpressed in human lung and prostate cancers. As detected by immunohistochemistry, GPR110 was overexpressed in 20 of 27 (74%) lung adenocarcinoma tissue cores and in 17 of 29 (59%) prostate adenocarcinoma tissue cores. Additionally, staining with a GPR110 antibody enabled us to differentiate between benign prostate hyperplasia and potential incipient malignancy.</p> <p>Conclusion</p> <p>Our work suggests a role for GPR110 in tumor physiology and supports it as a potential therapeutic candidate and disease marker for both lung and prostate cancer.</p

    Diverse Hematological Malignancies Including Hodgkin-Like Lymphomas Develop in Chimeric MHC Class II Transgenic Mice

    Get PDF
    A chimeric HLA-DR4-H2-E (DR4) homozygous transgenic mouse line spontaneously develops diverse hematological malignancies with high frequency (70%). The majority of malignancies were distributed equally between T and B cell neoplasms and included lymphoblastic T cell lymphoma (LTCL), lymphoblastic B cell lymphoma (LBCL), diffuse large B cell lymphoma (DLBCL), the histiocyte/T cell rich variant of DLBCL (DLBCL-HA/T cell rich DLBCL), splenic marginal zone lymphoma (SMZL), follicular B cell lymphoma (FBL) and plasmacytoma (PCT). Most of these neoplasms were highly similar to human diseases. Also, some non-lymphoid malignancies such as acute myeloid leukemia (AML) and histiocytic sarcoma were found. Interestingly, composite lymphomas, including Hodgkin-like lymphomas, were also detected that had CD30+ Hodgkin/Reed-Sternberg (H/RS)-like cells, representing a tumor type not previously described in mice. Analysis of microdissected H/RS-like cells revealed their origin as germinal center B cells bearing somatic hypermutations and, in some instances, crippled mutations, as described for human Hodgkin lymphoma (HL). Transgene integration in an oncogene was excluded as an exclusive driving force of tumorigenesis and age-related lymphoma development suggests a multi-step process. Thus, this DR4 line is a useful model to investigate common molecular mechanisms that may contribute to important neoplastic diseases in man

    The maize root stem cell niche: a partnership between two sister cell populations

    Get PDF
    Using transcript profile analysis, we explored the nature of the stem cell niche in roots of maize (Zea mays). Toward assessing a role for specific genes in the establishment and maintenance of the niche, we perturbed the niche and simultaneously monitored the spatial expression patterns of genes hypothesized as essential. Our results allow us to quantify and localize gene activities to specific portions of the niche: to the quiescent center (QC) or the proximal meristem (PM), or to both. The data point to molecular, biochemical and physiological processes associated with the specification and maintenance of the niche, and include reduced expression of metabolism-, redox- and certain cell cycle-associated transcripts in the QC, enrichment of auxin-associated transcripts within the entire niche, controls for the state of differentiation of QC cells, a role for cytokinins specifically in the PM portion of the niche, processes (repair machinery) for maintaining DNA integrity and a role for gene silencing in niche stabilization. To provide additional support for the hypothesized roles of the above-mentioned and other transcripts in niche specification, we overexpressed, in Arabidopsis, homologs of representative genes (eight) identified as highly enriched or reduced in the maize root QC. We conclude that the coordinated changes in expression of auxin-, redox-, cell cycle- and metabolism-associated genes suggest the linkage of gene networks at the level of transcription, thereby providing additional insights into events likely associated with root stem cell niche establishment and maintenance
    corecore