136 research outputs found

    Dynamics of serum antibodies to and load of porcine circovirus type 2 (PCV2) in pigs in three finishing herds, affected or not by postweaning multisystemic wasting syndrome

    Get PDF
    Background: Despite that PMWS commonly affects pigs aged eight to sixteen weeks; most studies of PMWS have been conducted during the period before transfer to finishing herds. This study focused on PCV2 load and antibody dynamics in finishing herds with different PMWS status. Methods: Sequentially collected blood samples from 40 pigs in each of two Swedish (A and B) and one Norwegian (C) finishing herds were analysed for serum PCV2-load and -antibodies and saliva cortisol. The two Swedish herds differed in PMWS status, despite receiving animals from the same sow pool (multi-site production). However, the PMWS-deemed herd (A) had previously also received pigs from the spot market. ResultsThe initial serum PCV2 load was similar in the two Swedish herds. In herd A, it peaked after two weeks in the finishing herd and a high number of the pigs had serum PCV2 levels above 10(7) per ml. The antibody titres increased continually with exception for the pigs that developed PMWS, that had initially low and then declining antibody levels. Pigs in the healthy herd B also expressed high titres of antibodies to PCV2 on arrival but remained at that level throughout the study whereas the viral load steadily decreased. No PCV2 antibodies and only low amounts of PCV2 DNA were detected in serum collected during the first five weeks in the PMWS-free herd C. Thereafter a peak in serum PCV2 load accompanied by an antibody response was recorded. PCV2 from the two Swedish herds grouped into genotype PCV2b whereas the Norwegian isolate grouped into PCV2a. Cortisol levels were lower in herd C than in herds A and B. Conclusions: The most obvious difference between the Swedish finishing herds and the Norwegian herd was the time of infection with PCV2 in relation to the time of allocation, as well as the genotype of PCV2. Clinical PMWS was preceded by low levels of serum antibodies and a high load of PCV2 but did not develop in all such animals. It is notable that herd A became affected by PMWS after errors in management routine, emphasising the importance of proper hygiene and general disease-preventing measures

    Emergency Portacaval Shunt Versus Rescue Portacaval Shunt in a Randomized Controlled Trial of Emergency Treatment of Acutely Bleeding Esophageal Varices in Cirrhosis—Part 3

    Get PDF
    Emergency treatment of bleeding esophageal varices in cirrhosis is of singular importance because of the high mortality rate. Emergency portacaval shunt is rarely used today because of the belief, unsubstantiated by long-term randomized trials, that it causes frequent portal-systemic encephalopathy and liver failure. Consequently, portacaval shunt has been relegated solely to salvage therapy when endoscopic and pharmacologic therapies have failed. Question: Is the regimen of endoscopic sclerotherapy with rescue portacaval shunt for failure to control bleeding varices superior to emergency portacaval shunt? A unique opportunity to answer this question was provided by a randomized controlled trial of endoscopic sclerotherapy versus emergency portacaval shunt conducted from 1988 to 2005. Unselected consecutive cirrhotic patients with acute bleeding esophageal varices were randomized to endoscopic sclerotherapy (n = 106) or emergency portacaval shunt (n = 105). Diagnostic workup was completed and treatment was initiated within 8 h. Failure of endoscopic sclerotherapy was defined by strict criteria and treated by rescue portacaval shunt (n = 50) whenever possible. Ninety-six percent of patients had more than 10 years of follow-up or until death. Comparison of emergency portacaval shunt and endoscopic sclerotherapy followed by rescue portacaval shunt showed the following differences in measurements of outcomes: (1) survival after 5 years (72% versus 22%), 10 years (46% versus 16%), and 15 years (46% versus 0%); (2) median post-shunt survival (6.18 versus 1.99 years); (3) mean requirements of packed red blood cell units (17.85 versus 27.80); (4) incidence of recurrent portal-systemic encephalopathy (15% versus 43%); (5) 5-year change in Child’s class showing improvement (59% versus 19%) or worsening (8% versus 44%); (6) mean quality of life points in which lower is better (13.89 versus 27.89); and (7) mean cost of care per year (39,200versus39,200 versus 216,700). These differences were highly significant in favor of emergency portacaval shunt (all p < 0.001). Emergency portacaval shunt was strikingly superior to endoscopic sclerotherapy as well as to the combination of endoscopic sclerotherapy and rescue portacaval shunt in regard to all outcome measures, specifically bleeding control, survival, incidence of portal-systemic encephalopathy, improvement in liver function, quality of life, and cost of care. These results strongly support the use of emergency portacaval shunt as the first line of emergency treatment of bleeding esophageal varices in cirrhosis

    Greenland ice sheet surface mass loss: recent developments in observation and modeling

    Get PDF
    Surface processes currently dominate Greenland ice sheet (GrIS) mass loss. We review recent developments in the observation and modelling of GrIS surface mass balance (SMB), published after the July 2012 deadline for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5). Since IPCC AR5 our understanding of GrIS SMB has further improved, but new observational and model studies have also revealed that temporal and spatial variability of many processes are still poorly quantified and understood, e.g. bio-albedo, the formation of ice lenses and their impact on lateral meltwater transport, heterogeneous vertical meltwater transport (‘piping’), the impact of atmospheric circulation changes and mixed-phase clouds on the surface energy balance and the magnitude of turbulent heat exchange over rough ice surfaces. As a result, these processes are only schematically or not at all included in models that are currently used to assess and predict future GrIS surface mass loss

    Genome-Wide Profiling of Histone H3 Lysine 4 and Lysine 27 Trimethylation Reveals an Epigenetic Signature in Prostate Carcinogenesis

    Get PDF
    BACKGROUND: Increasing evidence implicates the critical roles of epigenetic regulation in cancer. Very recent reports indicate that global gene silencing in cancer is associated with specific epigenetic modifications. However, the relationship between epigenetic switches and more dynamic patterns of gene activation and repression has remained largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Genome-wide profiling of the trimethylation of histone H3 lysine 4 (H3K4me3) and lysine 27 (H3K27me3) was performed using chromatin immunoprecipitation coupled with whole genome promoter microarray (ChIP-chip) techniques. Comparison of the ChIP-chip data and microarray gene expression data revealed that loss and/or gain of H3K4me3 and/or H3K27me3 were strongly associated with differential gene expression, including microRNA expression, between prostate cancer and primary cells. The most common switches were gain or loss of H3K27me3 coupled with low effect on gene expression. The least prevalent switches were between H3K4me3 and H3K27me3 coupled with much higher fractions of activated and silenced genes. Promoter patterns of H3K4me3 and H3K27me3 corresponded strongly with coordinated expression changes of regulatory gene modules, such as HOX and microRNA genes, and structural gene modules, such as desmosome and gap junction genes. A number of epigenetically switched oncogenes and tumor suppressor genes were found overexpressed and underexpressed accordingly in prostate cancer cells. CONCLUSIONS/SIGNIFICANCE: This work offers a dynamic picture of epigenetic switches in carcinogenesis and contributes to an overall understanding of coordinated regulation of gene expression in cancer. Our data indicate an H3K4me3/H3K27me3 epigenetic signature of prostate carcinogenesis

    Recent Advances in Our Understanding of the Role of Meltwater in the Greenland Ice Sheet System

    Get PDF
    Nienow, Sole and Cowton’s Greenland research has been supported by a number of UK NERC research grants (NER/O/S/2003/00620; NE/F021399/1; NE/H024964/1; NE/K015249/1; NE/K014609/1) and Slater has been supported by a NERC PhD studentshipPurpose of the review:  This review discusses the role that meltwater plays within the Greenland ice sheet system. The ice sheet’s hydrology is important because it affects mass balance through its impact on meltwater runoff processes and ice dynamics. The review considers recent advances in our understanding of the storage and routing of water through the supraglacial, englacial, and subglacial components of the system and their implications for the ice sheet Recent findings:   There have been dramatic increases in surface meltwater generation and runoff since the early 1990s, both due to increased air temperatures and decreasing surface albedo. Processes in the subglacial drainage system have similarities to valley glaciers and in a warming climate, the efficiency of meltwater routing to the ice sheet margin is likely to increase. The behaviour of the subglacial drainage system appears to limit the impact of increased surface melt on annual rates of ice motion, in sections of the ice sheet that terminate on land, while the large volumes of meltwater routed subglacially deliver significant volumes of sediment and nutrients to downstream ecosystems. Summary:  Considerable advances have been made recently in our understanding of Greenland ice sheet hydrology and its wider influences. Nevertheless, critical gaps persist both in our understanding of hydrology-dynamics coupling, notably at tidewater glaciers, and in runoff processes which ensure that projecting Greenland’s future mass balance remains challenging.Publisher PDFPeer reviewe

    Discovering Transcription Factor Binding Sites in Highly Repetitive Regions of Genomes with Multi-Read Analysis of ChIP-Seq Data

    Get PDF
    Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) is rapidly replacing chromatin immunoprecipitation combined with genome-wide tiling array analysis (ChIP-chip) as the preferred approach for mapping transcription-factor binding sites and chromatin modifications. The state of the art for analyzing ChIP-seq data relies on using only reads that map uniquely to a relevant reference genome (uni-reads). This can lead to the omission of up to 30% of alignable reads. We describe a general approach for utilizing reads that map to multiple locations on the reference genome (multi-reads). Our approach is based on allocating multi-reads as fractional counts using a weighted alignment scheme. Using human STAT1 and mouse GATA1 ChIP-seq datasets, we illustrate that incorporation of multi-reads significantly increases sequencing depths, leads to detection of novel peaks that are not otherwise identifiable with uni-reads, and improves detection of peaks in mappable regions. We investigate various genome-wide characteristics of peaks detected only by utilization of multi-reads via computational experiments. Overall, peaks from multi-read analysis have similar characteristics to peaks that are identified by uni-reads except that the majority of them reside in segmental duplications. We further validate a number of GATA1 multi-read only peaks by independent quantitative real-time ChIP analysis and identify novel target genes of GATA1. These computational and experimental results establish that multi-reads can be of critical importance for studying transcription factor binding in highly repetitive regions of genomes with ChIP-seq experiments

    Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation

    Get PDF
    Understanding the function of histone modifications across inducible genes in mammalian cells requires quantitative, comparative analysis of their fate during gene activation and identification of enzymes responsible. We produced high-resolution comparative maps of the distribution and dynamics of H3K4me3, H3K36me3, H3K79me2 and H3K9ac across c-fos and c-jun upon gene induction in murine fibroblasts. In unstimulated cells, continuous turnover of H3K9 acetylation occurs on all K4-trimethylated histone H3 tails; distribution of both modifications coincides across promoter and 5′ part of the coding region. In contrast, K36- and K79-methylated H3 tails, which are not dynamically acetylated, are restricted to the coding regions of these genes. Upon stimulation, transcription-dependent increases in H3K4 and H3K36 trimethylation are seen across coding regions, peaking at 5′ and 3′ ends, respectively. Addressing molecular mechanisms involved, we find that Huntingtin-interacting protein HYPB/Setd2 is responsible for virtually all global and transcription-dependent H3K36 trimethylation, but not H3K36-mono- or dimethylation, in these cells. These studies reveal four distinct layers of histone modification across inducible mammalian genes and show that HYPB/Setd2 is responsible for H3K36 trimethylation throughout the mouse nucleus

    Immunochemical analysis of cathepsin B in lung tumours: an independent prognostic factor for squamous cell carcinoma patients

    Get PDF
    In order to evaluate the possible role of the proteolytic enzyme cathepsin B (cath B) in human non-small cell lung cancer (NSCLC) we examined cath B concentrations (cath Bc) and activities (cath BA) in homogenates of 127 pairs of lung tumour tissues and corresponding non-tumourous lung parenchyma. Total cath B activity (cath BAT) and enzymatic activity of the fraction of cath B, which is stable and active at pH 7.5 (cath BA7.5) were determined by a fluorogenic assay using synthetic substrate Z-Arg-Arg-AMC. The immunostaining pattern of cath B was determined in 239 lung tumour tissue sections, showing the presence of the enzyme in tumour cells (cath BT-I) and in tumour-associated histiocytes (cath BH-I). The median levels of cath BAT, cath BA7.5 and cath BC were 5.6-, 3.2- and 9.1-fold higher (P < 0.001), respectively, in tumour tissue than in non-tumourous lung parenchyma. Out of 131 tissue sections from patients with squamous cell carcinoma (SCC), 59.5% immunostained positively for cath B, while among the 108 adenocarcinoma (AC) patients 48.2% of tumours showed a positive reaction. There was a strong relationship between the levels of cath BAT, cath BA7.5, cath BC and cath BT-I in the primary tumours and the presence of lymph node metastases. Significant correlation with overall survival was observed for cath BT-I and cath BA7.5 (P < 0.01 and P < 0.05, respectively) in patients suffering from SCC. In these patients positive cath B in tumour cells (cath BT-I) and negative cath B in histiocytes (cath BH-I) indicated significantly shorter survival rate compared with patients with negative cath BT-I and positive cath BH-I (P < 0.0001). In contrast, in AC patients, both, positive cath BT-I and positive cath BH-I, indicated poor survival probability (P < 0.014). From these results we conclude that the proteolytic enzyme cath B is an independent prognostic factor for overall survival of patients suffering from SCC of the lung. © 1999 Cancer Research Campaig
    corecore