104 research outputs found

    Mammalian comparative genomics and epigenomics

    Get PDF
    Thesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2009.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references.The human genome sequence can be thought of as an instruction manual for our species, written and rewritten over more than a billion of years of evolution. Taking a complete inventory of our genome, dissecting its genes and their functional components, and elucidating how these genes are selectively used to establish and maintain cell types with markedly different behaviors, are key challenges of modern biology. In this thesis we present contributions to our understanding of the structure, function and evolution of the human genome. We rely on two complementary approaches. First, we study signatures of evolutionary processes that have acted on the genome using comparative sequence analysis. We generate high quality draft genome sequences of the chimpanzee, the dog and the opossum. These species share a last common ancestor with humans approximately 6 million, 80 million and 140 million years ago, respectively, and therefore provide distinct perspectives on our evolutionary history. We apply computational methods to explore the functional organization of the genome and to identify genes that contribute to shared and species-specific traits. Second, we study how the genome is bound by proteins and packaged into chromatin in distinct cell types. We develop new methods to map protein-DNA interactions and DNA methylation using single-molecule based sequencing technology. We apply these methods to identify new functional sequence elements based on characteristic chromatin signatures, and to explore the relationship between DNA sequence, chromatin and cellular state.by Tarjei Sigurd Mikkelsen.Ph.D

    Analysis of the Effects of Five Factors Relevant to In Vitro Chondrogenesis of Human Mesenchymal Stem Cells Using Factorial Design and High Throughput mRNA-Profiling

    Get PDF
    The in vitro process of chondrogenic differentiation of mesenchymal stem cells for tissue engineering has been shown to require three-dimensional culture along with the addition of differentiation factors to the culture medium. In general, this leads to a phenotype lacking some of the cardinal features of native articular chondrocytes and their extracellular matrix. The factors used vary, but regularly include members of the transforming growth factor β superfamily and dexamethasone, sometimes in conjunction with fibroblast growth factor 2 and insulin-like growth factor 1, however the use of soluble factors to induce chondrogenesis has largely been studied on a single factor basis. In the present study we combined a factorial quality-by-design experiment with high-throughput mRNA profiling of a customized chondrogenesis related gene set as a tool to study in vitro chondrogenesis of human bone marrow derived mesenchymal stem cells in alginate. 48 different conditions of transforming growth factor β 1, 2 and 3, bone morphogenetic protein 2, 4 and 6, dexamethasone, insulin-like growth factor 1, fibroblast growth factor 2 and cell seeding density were included in the experiment. The analysis revealed that the best of the tested differentiation cocktails included transforming growth factor β 1 and dexamethasone. Dexamethasone acted in synergy with transforming growth factor β 1 by increasing many chondrogenic markers while directly downregulating expression of the pro-osteogenic gene osteocalcin. However, all factors beneficial to the expression of desirable hyaline cartilage markers also induced undesirable molecules, indicating that perfect chondrogenic differentiation is not achievable with the current differentiation protocols

    Registry in a tube:multiplexed pools of retrievable parts for genetic design space exploration

    Get PDF
    The publisher would like to apologise for an error in Figure 4. The shaded gates in Figure 4C and 4D were missing in the final version. These shaded gates illustrate that any combination of repressors can be wired together by accessing the pools in Figure 4A. The correct figures are available below and have been replaced in the published article

    Comparative Epigenomic Analysis of Murine and Human Adipogenesis

    Get PDF
    We report the generation and comparative analysis of genome-wide chromatin state maps, PPARγ and CTCF localization maps, and gene expression profiles from murine and human models of adipogenesis. The data provide high-resolution views of chromatin remodeling during cellular differentiation and allow identification of thousands of putative preadipocyte- and adipocyte-specific cis-regulatory elements based on dynamic chromatin signatures. We find that the specific locations of most such elements differ between the two models, including at orthologous loci with similar expression patterns. Based on sequence analysis and reporter assays, we show that these differences are determined, in part, by evolutionary turnover of transcription factor motifs in the genome sequences and that this turnover may be facilitated by the presence of multiple distal regulatory elements at adipogenesis-dependent loci. We also utilize the close relationship between open chromatin marks and transcription factor motifs to identify and validate PLZF and SRF as regulators of adipogenesis.National Institutes of Health (U.S.) (DK63906)American Diabetes Association (Career Development Award)Pennington Biomedical Research FoundationNORC Center (Grant #1P30 DK072476

    A unique regulatory phase of DNA methylation in the early mammalian embryo

    Get PDF
    DNA methylation is highly dynamic during mammalian embryogenesis. It is broadly accepted that the paternal genome is actively depleted of 5-methylcytosine at fertilization, followed by passive loss that reaches a minimum at the blastocyst stage. However, this model is based on limited data, and so far no base-resolution maps exist to support and refine it. Here we generate genome-scale DNA methylation maps in mouse gametes and from the zygote through post-implantation. We find that the oocyte already exhibits global hypomethylation, particularly at specific families of long interspersed element 1 and long terminal repeat retroelements, which are disparately methylated between gametes and have lower methylation values in the zygote than in sperm. Surprisingly, the oocyte contributes a unique set of differentially methylated regions (DMRs)—including many CpG island promoters—that are maintained in the early embryo but are lost upon specification and absent from somatic cells. In contrast, sperm-contributed DMRs are largely intergenic and become hypermethylated after the blastocyst stage. Our data provide a genome-scale, base-resolution timeline of DNA methylation in the pre-specified embryo, when this epigenetic modification is most dynamic, before returning to the canonical somatic pattern.Burroughs Wellcome (Career Award)National Institutes of Health (U.S.) (5RC1AA019317)National Institutes of Health (U.S.) (U01ES017155)National Institutes of Health (U.S.) (P01GM099117)National Human Genome Research Institute (U.S.) (1P50HG006193-01

    Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay

    Get PDF
    Genome-wide chromatin annotations have permitted the mapping of putative regulatory elements across multiple human cell types. However, their experimental dissection by directed regulatory motif disruption has remained unfeasible at the genome scale. Here, we use a massively parallel reporter assay (MPRA) to measure the transcriptional levels induced by 145-bp DNA segments centered on evolutionarily conserved regulatory motif instances within enhancer chromatin states. We select five predicted activators (HNF1, HNF4, FOXA, GATA, NFE2L2) and two predicted repressors (GFI1, ZFP161) and measure reporter expression in erythroleukemia (K562) and liver carcinoma (HepG2) cell lines. We test 2104 wild-type sequences and 3314 engineered enhancer variants containing targeted motif disruptions, each using 10 barcode tags and two replicates. The resulting data strongly confirm the enhancer activity and cell-type specificity of enhancer chromatin states, the ability of 145-bp segments to recapitulate both, the necessary role of regulatory motifs in enhancer function, and the complementary roles of activator and repressor motifs. We find statistically robust evidence that (1) disrupting the predicted activator motifs abolishes enhancer function, while silent or motif-improving changes maintain enhancer activity; (2) evolutionary conservation, nucleosome exclusion, binding of other factors, and strength of the motif match are predictive of enhancer activity; (3) scrambling repressor motifs leads to aberrant reporter expression in cell lines where the enhancers are usually inactive. Our results suggest a general strategy for deciphering cis-regulatory elements by systematic large-scale manipulation and provide quantitative enhancer activity measurements across thousands of constructs that can be mined to develop predictive models of gene expression.National Institutes of Health (U.S.) (Grant HG004037)National Institutes of Health (U.S.) (Grant HG004037-S1

    ZBED6 Modulates the Transcription of Myogenic Genes in Mouse Myoblast Cells

    Get PDF
    ZBED6 is a recently discovered transcription factor, unique to placental mammals, that has evolved from a domesticated DNA transposon. It acts as a repressor at the IGF2 locus. Here we show that ZBED6 acts as a transcriptional modulator in mouse myoblast cells, where more than 700 genes were differentially expressed after Zbed6-silencing. The most significantly enriched GO term was muscle protein and contractile fiber, which was consistent with increased myotube formation. Twenty small nucleolar RNAs all showed increased expression after Zbed6-silencing. The co-localization of histone marks and ZBED6 binding sites and the effect of Zbed6-silencing on distribution of histone marks was evaluated by ChIP-seq analysis. There was a strong association between ZBED6 binding sites and the H3K4me3, H3K4me2 and H3K27ac modifications, which are usually found at active promoters, but no association with the repressive mark H3K27me3. Zbed6-silencing led to increased enrichment of active marks at myogenic genes, in agreement with the RNA-seq findings. We propose that ZBED6 preferentially binds to active promoters and modulates transcriptional activity without recruiting repressive histone modifications

    Direct Identification of Hundreds of Expression-Modulating Variants using a Multiplexed Reporter Assay

    Get PDF
    Although studies have identified hundreds of loci associated with human traits and diseases, pinpointing causal alleles remains difficult, particularly for non-coding variants. To address this challenge, we adapted the massively parallel reporter assay (MPRA) to identify variants that directly modulate gene expression. We applied it to 32,373 variants from 3,642 cis-expression quantitative trait loci and control regions. Detection by MPRA was strongly correlated with measures of regulatory function. We demonstrate MPRA’s capabilities for pinpointing causal alleles, using it to identify 842 variants showing differential expression between alleles, including 53 well-annotated variants associated with diseases and traits. We investigated one in detail, a risk allele for ankylosing spondylitis, and provide direct evidence of a non-coding variant that alters expression of the prostaglandin EP4 receptor. These results create a resource of concrete leads and illustrate the promise of this approach for comprehensively interrogating how non-coding polymorphism shapes human biology.National Institutes of Health (U.S.) (grant DP2OD006514)National Institutes of Health (U.S.) (grant K99HG0081)National Institutes of Health (U.S.) (grant R01HG006785
    • …
    corecore