2,868 research outputs found

    Icing flight research: Aerodynamic effects of ice and ice shape documentation with stereo photography

    Get PDF
    Aircraft icing flight research was performed in natural icing conditions. A data base consisting of icing cloud measurements, ice shapes, and aerodynamic measurements is being developed. During research icing encounters the icing cloud was continuously measured. After the encounter, the ice accretion shapes on the wing were documented with a stereo camera system. The increase in wing section drag was measured with a wake survey probe. The overall aircraft performance loss in terms of lift and drag coefficient changes was obtained by steady level speed/power measurements. Selective deicing of the airframe components was performed to determine their contributions to the total drag increase. Engine out capability in terms of power available was analyzed for the iced aircraft. It was shown that the stereo photography system can be used to document ice shapes in flight and that the wake survey probe can measure increases in wing section drag caused by ice. On one flight, the wing section drag coefficient (c sub d) increased approximately 120 percent over the uniced baseline at an aircraft angle of attack of 6 deg. On another flight, the aircraft darg coefficient (c sub d) increased by 75 percent over the uniced baseline at an aircraft lift coefficient (C sub d) of 0.5

    Teledermatology and COVID-19

    Get PDF

    Emission control strategies for short-chain chloroparaffins in two semi-hypothetical case cities

    Get PDF
    The short-chain chloroparaffins (SCCP), (C10-13 chloroalkanes) are identified in the European Water Framework Directive, as priority hazardous substances. Within the ScorePP project, the aim is to develop emission control strategies that can be employed to reduce emissions from urban areas into receiving waters. Six different scenarios for mitigating SCCP emissions in two different semi-hypothetical case cities representing eastern inland and northern coastal conditions have been evaluated. The analysis, associated with scenario uncertainty, indicates that the EU legislation, Best Available Technologies (BAT) and stormwater/CSO management were the most favorable in reducing emissions into the environment

    X-ray tomography data of compression tested unidirectional fibre composites with different off-axis angles

    Get PDF
    This data article contains lab-based micro-computed tomography (μCT) data of unidirectional (UD) non-crimp fabric (NCF) carbon fibre reinforced composite specimens that have been deformed by compression. The specimens contain UD fibres with off-axis angles of 0\ub0, 5\ub0, 10\ub0, 15\ub0 and 20\ub0 and the compression testing induces kink-band formation. This data formed the basis for the analysis of the influence of in-plane shear on kink-plane orientation as reported in Wilhelmsson et al. (Wilhelmsson et al., 2019)

    Experimental investigation of the Landau-Pomeranchuk-Migdal effect in low-Z targets

    Full text link
    In the CERN NA63 collaboration we have addressed the question of the potential inadequacy of the commonly used Migdal formulation of the Landau-Pomeranchuk-Migdal (LPM) effect by measuring the photon emission by 20 and 178 GeV electrons in the range 100 MeV - 4 GeV, in targets of LowDensityPolyEthylene (LDPE), C, Al, Ti, Fe, Cu, Mo and, as a reference target, Ta. For each target and energy, a comparison between simulated values based on the LPM suppression of incoherent bremsstrahlung is shown, taking multi-photon effects into account. For these targets and energies, we find that Migdal's theoretical formulation is adequate to a precision of better than about 5%, irrespective of the target substance.Comment: 8 pages, 13 figure

    Charge separation in donor-C60 complexes with real-time Green's functions: The importance of nonlocal correlations

    Full text link
    We use the Nonequilibrium Green's Function (NEGF) method to perform real-time simulations of the ultrafast electron dynamics of photoexcited donor-C60 complexes modeled by a Pariser-Parr-Pople Hamiltonian. The NEGF results are compared to mean-field Hartree-Fock (HF) calculations to disentangle the role of correlations. Initial benchmarking against numerically highly accurate time-dependent Density Matrix Renormalization Group calculations verifies the accuracy of NEGF. We then find that charge-transfer (CT) excitons partially decay into charge separated (CS) states if dynamical non-local correlation corrections are included. This CS process occurs in ~10 fs after photoexcitation. In contrast, the probability of exciton recombination is almost 100% in HF simulations. These results are largely unaffected by nuclear vibrations; the latter become however essential whenever level misalignment hinders the CT process. The robust nature of our findings indicate that ultrafast CS driven by correlation-induced decoherence may occur in many organic nanoscale systems, but it will only be correctly predicted by theoretical treatments that include time-nonlocal correlations.Comment: 9 pages, 6 figures + supplemental information (4 pages)

    Hand sanitation and the COVID-19 pandemic

    Get PDF
    • …
    corecore