64 research outputs found

    Multiple fragmented habitat-patch use in an urban breeding passerine, the Short-toed Treecreeper

    Get PDF
    Individual responses of wild birds to fragmented habitat have rarely been studied, despite large-scale habitat fragmentation and biodiversity loss resulting from widespread urbanisation. We investigated the spatial ecology of the Short-toed Treecreeper Certhia brachydactyla, a tiny, resident, woodland passerine that has recently colonised city parks at the northern extent of its range. High resolution spatiotemporal movements of this obligate tree-living species were determined using radio telemetry within the urbanized matrix of city parks in Copenhagen, Denmark. We identified regular edge crossing behaviour, novel in woodland birds. While low numbers of individuals precluded a comprehensive characterisation of home range for this population, we were able to describe a consistent behaviour which has consequences for our understanding of animal movement in urban ecosystems. We report that treecreepers move freely, and apparently do so regularly, between isolated habitat patches. This behaviour is a possible driver of the range expansion in this species and may contribute to rapid dispersal capabilities in certain avian species, including Short-toed Treecreepers, into northern Europe. Alternatively, these behaviours might be common and/or provide an adaptive advantage for birds utilising matrix habitats, for example within urban ecosystems

    Transcutaneous spinal direct current stimulation increases corticospinal transmission and enhances voluntary motor output in humans

    Get PDF
    Optimization of motor performance is of importance in daily life, in relation to recovery following injury as well as for elite sports performance. The present study investigated whether transcutaneous spinal direct current stimulation (tsDCS) may enhance voluntary ballistic activation of ankle muscles and descending activation of spinal motor neurons in able‐bodied adults. Forty‐one adults (21 men; 24.0 ± 3.2 years) participated in the study. The effect of tsDCS on ballistic motor performance and plantar flexor muscle activation was assessed in a double‐blinded sham‐controlled cross‐over experiment. In separate experiments, the underlying changes in excitability of corticospinal and spinal pathways were probed by evaluating soleus (SOL) motor evoked potentials (MEPs) following single‐pulse transcranial magnetic stimulation (TMS) over the primary motor cortex, SOL H‐reflexes elicited by tibial nerve stimulation and TMS‐conditioning of SOL H‐reflexes. Measures were obtained before and after cathodal tsDCS over the thoracic spine (T11‐T12) for 10 min at 2.5 mA. We found that cathodal tsDCS transiently facilitated peak acceleration in the ballistic motor task compared to sham tsDCS. Following tsDCS, SOL MEPs were increased without changes in H‐reflex amplitudes. The short‐latency facilitation of the H‐reflex by subthreshold TMS, which is assumed to be mediated by the fast conducting monosynaptic corticomotoneuronal pathway, was also enhanced by tsDCS. We argue that tsDCS briefly facilitates voluntary motor output by increasing descending drive from corticospinal neurones to spinal plantar flexor motor neurons. tsDCS can thus transiently promote within‐session CNS function and voluntary motor output and holds potential as a technique in the rehabilitation of motor function following central nervous lesions

    Selective N-terminal acylation of peptides and proteins with a Gly-His tag sequence

    Get PDF
    His-tagged proteins can undergo N-terminal acylation as an undesired side-reaction. Here, the authors utilize this to develop a method for highly selective acylation and further modification of peptides and proteins using an optimized His sequence and 4-methoxyphenyl esters as acyl donors

    Mid-infrared OCT imaging in highly scattering samples using real-time upconversion of broadband supercontinuum covering from 3.6-4.6 Îźm

    Get PDF
    We present a mid-infrared spectral-domain optical coherence tomography system operating at 4.1 Îźm central wavelength with a high axial resolution of 8.6 Îźm enabled by more than 1 Îźm bandwidth from 3.58-4.63 Îźm produced by a mid-infrared supercontinuum laser. The system produces 2D cross-sectional images in real-time enabled the high-brightness of the supercontinuum source in combination with broadband upconversion of the signal to the range 820-865 nm, where a standard 800 nm array spectrometer can be used for fast detection. We discuss the potential applications within nondestructive testing in highly scattering materials and within biomedical imaging for achieving the in-vivo optical biopsy

    Risk Factors for Being Seronegative following SARS-CoV-2 Infection in a Large Cohort of Health Care Workers in Denmark

    Get PDF
    Most individuals seroconvert after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but being seronegative is observed in 1 to 9%. We aimed to investigate the risk factors associated with being seronegative following PCR-confirmed SARS-CoV-2 infection. In a prospective cohort study, we screened health care workers (HCW) in the Capital Region of Denmark for SARS-CoV-2 antibodies. We performed three rounds of screening from April to October 2020 using an enzyme-linked immunosorbent assay (ELISA) method targeting SARS-CoV-2 total antibodies. Data on all participants’ PCR for SARS-CoV-2 RNA were captured from national registries. The Kaplan-Meier method and Cox proportional hazards models were applied to investigate the probability of being seronegative and the related risk factors, respectively. Of 36,583 HCW, 866 (2.4%) had a positive PCR before or during the study period. The median (interquartile range [IQR]) age of 866 HCW was 42 (31 to 53) years, and 666 (77%) were female. After a median of 132 (range, 35 to 180) days, 21 (2.4%) of 866 were seronegative. In a multivariable model, independent risk factors for being seronegative were self-reported asymptomatic or mild infection hazard ratio (HR) of 6.6 (95% confidence interval [CI], 2.6 to 17; P < 0.001) and body mass index (BMI) of ≥30, HR 3.1 (95% CI, 1.1 to 8.8; P = 0.039). Only a few (2.4%) HCW were not seropositive. Asymptomatic or mild infection as well as a BMI above 30 were associated with being seronegative. Since the presence of antibodies against SARS-CoV-2 reduces the risk of reinfection, efforts to protect HCW with risk factors for being seronegative may be needed in future COVID-19 surges. IMPORTANCE Most individuals seroconvert after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but negative serology is observed in 1 to 9%. We found that asymptomatic or mild infection as well as a BMI above 30 were associated with being seronegative. Since the presence of antibodies against SARS-CoV-2 reduces the risk of reinfection, efforts to protect HCW with risk factors for being seronegative may be needed in future COVID-19 surges

    Mapping the Complex Morphology of Cell Interactions with Nanowire Substrates Using FIB-SEM

    Get PDF
    Using high resolution focused ion beam scanning electron microscopy (FIB-SEM) we study the details of cell-nanostructure interactions using serial block face imaging. 3T3 Fibroblast cellular monolayers are cultured on flat glass as a control surface and on two types of nanostructured scaffold substrates made from silicon black (Nanograss) with low- and high nanowire density. After culturing for 72 hours the cells were fixed, heavy metal stained, embedded in resin, and processed with FIB-SEM block face imaging without removing the substrate. The sample preparation procedure, image acquisition and image post-processing were specifically optimised for cellular monolayers cultured on nanostructured substrates. Cells display a wide range of interactions with the nanostructures depending on the surface morphology, but also greatly varying from one cell to another on the same substrate, illustrating a wide phenotypic variability. Depending on the substrate and cell, we observe that cells could for instance: break the nanowires and engulf them, flatten the nanowires or simply reside on top of them. Given the complexity of interactions, we have categorised our observations and created an overview map. The results demonstrate that detailed nanoscale resolution images are required to begin understanding the wide variety of individual cells' interactions with a structured substrate. The map will provide a framework for light microscopy studies of such interactions indicating what modes of interactions must be considered

    Using Polarized Spectroscopy to Investigate Order in Thin-Films of Ionic Self-Assembled Materials Based on Azo-Dyes

    Get PDF
    Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation. Investigating thin films of ordered molecular materials relies to a large extent on advanced experimental methods and large research infrastructure. A statement that in particular is true for thin films with nanoscopic order, where X-ray reflectometry, X-ray and neutron scattering, electron microscopy and atom force microscopy (AFM) has to be used to elucidate film morphology and the underlying molecular structure. Here, the thin films were investigated using AFM, optical microscopy and polarized absorption spectroscopy. It was shown that by using numerical method for treating the polarized absorption spectroscopy data, the molecular structure can be elucidated. Further, it was shown that polarized optical spectroscopy is a general tool that allows determination of the molecular order in thin films. Finally, it was found that full control of thermal history and rigorous control of the ionic self-assembly conditions are required to reproducibly make these materials of high nanoscopic order. Similarly, the conditions for spin-casting are shown to be determining for the overall thin film morphology, while molecular order is maintained

    Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project

    Get PDF
    The dissociation of molecules, even the most simple hydrogen molecule, cannot be described accurately within density functional theory because none of the currently available functionals accounts for strong on-site correlation. This problem led to a discussion of properties that the local Kohn-Sham potential has to satisfy in order to correctly describe strongly correlated systems. We derive an analytic expression for the nontrivial form of the Kohn-Sham potential in between the two fragments for the dissociation of a single bond. We show that the numerical calculations for a one-dimensional two-electron model system indeed approach and reach this limit. It is shown that the functional form of the potential is universal, i.e., independent of the details of the two fragments.We acknowledge funding by the Spanish MEC (Grant No. FIS2007-65702-C02-01), “Grupos Consolidados UPV/EHU del Gobierno Vasco” (Grant No. IT-319-07), and the European Community through e-I3 ETSF project (Grant Agreement No. 211956).Peer reviewe

    Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project

    Get PDF
    • …
    corecore