46 research outputs found
Identification of semen from criminal materials by means of paper chromatography--a forensic-medical study
In the present experiments attempts were made to identify semen from various specimens such as the semen itself, spots of semen on clothes, putrefied semen or semen contaminated with blood, menstrual blood, vaginal fluid, according to the techniques of LEVONEN. As the result it has been clarified that in every instance it is possible to isolate and detect the spots of choline by
spraying Dragehdorff's reagent.</p
Acinar Cell Carcinoma of the Pancreas with Colon Involvement
We report a case of acinar cell carcinoma of the pancreas with colon involvement that was difficult to distinguish from primary colon cancer. A 60-year-old man was admitted with a 1-month history of diarrhea. Contrast-enhanced computed tomography (CT) revealed a large tumor (10.6×11.6 cm) at the splenic flexure of the colon. Colonoscopy showed completely round ulcerative lesions, and biopsy revealed poorly differentiated adenocarcinoma. Left hemicolectomy, resection of the jejunum and pancreas body and tail, and splenectomy were performed based on a diagnosis of descending colon cancer (cT4N0M0, stage IIB), and surgery was considered to be curative. Diagnosis was subsequently confirmed as moderately differentiated acinar cell carcinoma of the pancreas by immunohistochemical staining (pT3N0M0, stage IIA). Multiple liver metastases with portal thrombosis were found 8 weeks postoperatively. Despite combination chemotherapy with oral S-1 and gemcitabine, the patient died of hepatic failure with no effect of chemotherapy 14 weeks postoperatively. Correct diagnosis was difficult to determine preoperatively from the clinical, CT, and colonoscopy findings. Moreover, the disease was extremely aggressive even after curative resection. Physicians should consider pancreatic cancer in the differential diagnosis of similar cases
生殖補助医療を行っている患者において卵胞液中のキスペプチン濃度は卵成熟および性腺ホルモン値と関連している
Purpose: To assess the kisspeptin concentrations in follicular fluid and their relationship with clinical outcomes during assisted reproductive technology.
Methods: Thirty-nine patients who were aged 24-40 years and underwent oocyte retrieval for in vitro fertilization/intracytoplasmic sperm injection participated in this study. In 65 follicular fluid samples that had been obtained from 30 patients and their blood samples, the kisspeptin levels were measured in order to investigate the correlations with their gonadal hormone levels. Venous blood samples were collected from 14 patients to investigate their plasma kisspeptin levels across different phases of assisted reproductive technology.
Results: The follicular fluid kisspeptin level was significantly higher than that of the plasma level and was positively associated with the follicular fluid estradiol concentration and with the serum estradiol and number of mature oocytes. In the plasma, the maximum concentration of kisspeptin was observed on the day of ovum pick-up and on the day of embryo transfer during ovarian stimulation for assisted reproductive technology.
Conclusion: Kisspeptin was present in the follicular fluid and the plasma kisspeptin concentration was affected by ovarian stimulation. Kisspeptin appears to affect oocyte maturation and ovulation
OVARIAN Kiss1 mRNA IN THE PREPUBERTAL PERIOD
Kisspeptin, which is encoded by the Kiss1 gene, and its receptor, the G protein-coupled receptor 54 (Kiss1r), play important roles in the regulation of reproductive functions in mammals. Several studies have shown that the Kiss1 and Kiss1r genes are expressed in the rat, primate, and human ovaries, and that the ovarian kisspeptin system plays a pivotal role in ovulation at the proestrous stage in adulthood. The purpose of this study was to evaluate development-related changes in the expression of ovarian Kiss1 and Kiss1r genes and in kisspeptin levels, and to identify the regulatory factors for these genes during the prepubertal period. The serum kisspeptin level was also measured to examine whether ovarian kisspeptin affects serum kisspeptin levels. Variations in the ovarian Kiss1 and Kiss1r mRNA levels were observed during the prepubertal period in female rats, with levels peaking around postnatal days 20 and 15, respectively. Nevertheless, the ovarian kisspeptin content per total protein level was stably maintained. Serum kisspeptin levels at postnatal days 30 and 35 were higher than those at earlier postnatal days. The pattern of the ovarian Kiss1 mRNA levels was similar to that of the serum luteinizing hormone (LH) levels, and the ovarian Kiss1 mRNA level increased after injection with human chorionic gonadotropin (HCG) on postnatal day 20, but not on postnatal days 10 and 30. These data indicate that ovarian Kiss1 and Kiss1r mRNA levels are increased on postnatal days 20 and 15, respectively, and that changes in the serum LH level and the ovarian sensitivity to LH may be involved in the alteration of ovarian Kiss1 mRNA levels
Cell Type-Specific Transcriptome of Brassicaceae Stigmatic Papilla Cells From a Combination of Laser Microdissection and RNA Sequencing
Pollination is an early and critical step in plant reproduction, leading to successful fertilization. It consists of many sequential processes, including adhesion of pollen grains onto the surface of stigmatic papilla cells, foot formation to strengthen pollen-stigma interaction, pollen hydration and germination, and pollen tube elongation and penetration. We have focused on an examination of the expressed genes in papilla cells, to increase understanding of the molecular systems of pollination. From three representative species of Brassicaceae (Arabidopsis thaliana, A. halleri and Brassica rapa), stigmatic papilla cells were isolated precisely by laser microdissection, and cell type-specific gene expression in papilla cells was determined by RNA sequencing. As a result, 17,240, 19,260 and 21,026 unigenes were defined in papilla cells of A. thaliana, A. halleri and B. rapa, respectively, and, among these, 12,311 genes were common to all three species. Among the17,240 genes predicted in A. thaliana, one-third were papilla specific while approximately half of the genes were detected in all tissues examined. Bioinformatics analysis revealed that genes related to a wide range of reproduction and development functions are expressed in papilla cells, particularly metabolism, transcription and membrane-mediated information exchange. These results reflect the conserved features of general cellular function and also the specific reproductive role of papilla cells, highlighting a complex cellular system regulated by a diverse range of molecules in these cells. This study provides fundamental biological knowledge to dissect the molecular mechanisms of pollination in papilla cells and will shed light on our understanding of plant reproduction mechanism
Separated Transcriptomes of Male Gametophyte and Tapetum in Rice: Validity of a Laser Microdissection (LM) Microarray
In flowering plants, the male gametophyte, the pollen, develops in the anther. Complex patterns of gene expression in both the gametophytic and sporophytic tissues of the anther regulate this process. The gene expression profiles of the microspore/pollen and the sporophytic tapetum are of particular interest. In this study, a microarray technique combined with laser microdissection (44K LM-microarray) was developed and used to characterize separately the transcriptomes of the microspore/pollen and tapetum in rice. Expression profiles of 11 known tapetum specific-genes were consistent with previous reports. Based on their spatial and temporal expression patterns, 140 genes which had been previously defined as anther specific were further classified as male gametophyte specific (71 genes, 51%), tapetum-specific (seven genes, 5%) or expressed in both male gametophyte and tapetum (62 genes, 44%). These results indicate that the 44K LM-microarray is a reliable tool to analyze the gene expression profiles of two important cell types in the anther, the microspore/pollen and tapetum
Comprehensive Network Analysis of Anther-Expressed Genes in Rice by the Combination of 33 Laser Microdissection and 143 Spatiotemporal Microarrays
Co-expression networks systematically constructed from large-scale transcriptome data reflect the interactions and functions of genes with similar expression patterns and are a powerful tool for the comprehensive understanding of biological events and mining of novel genes. In Arabidopsis (a model dicot plant), high-resolution co-expression networks have been constructed from very large microarray datasets and these are publicly available as online information resources. However, the available transcriptome data of rice (a model monocot plant) have been limited so far, making it difficult for rice researchers to achieve reliable co-expression analysis. In this study, we performed co-expression network analysis by using combined 44 K agilent microarray datasets of rice, which consisted of 33 laser microdissection (LM)-microarray datasets of anthers, and 143 spatiotemporal transcriptome datasets deposited in RicexPro. The entire data of the rice co-expression network, which was generated from the 176 microarray datasets by the Pearson correlation coefficient (PCC) method with the mutual rank (MR)-based cut-off, contained 24,258 genes and 60,441 genes pairs. Using these datasets, we constructed high-resolution co-expression subnetworks of two specific biological events in the anther, “meiosis” and “pollen wall synthesis”. The meiosis network contained many known or putative meiotic genes, including genes related to meiosis initiation and recombination. In the pollen wall synthesis network, several candidate genes involved in the sporopollenin biosynthesis pathway were efficiently identified. Hence, these two subnetworks are important demonstrations of the efficiency of co-expression network analysis in rice. Our co-expression analysis included the separated transcriptomes of pollen and tapetum cells in the anther, which are able to provide precise information on transcriptional regulation during male gametophyte development in rice. The co-expression network data presented here is a useful resource for rice researchers to elucidate important and complex biological events