153 research outputs found

    Transcriptome analysis reveals absence of unintended effects in drought-tolerant transgenic plants overexpressing the transcription factor ABF3

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plants engineered for abiotic stress tolerance may soon be commercialized. The engineering of these plants typically involves the manipulation of complex multigene networks and may therefore have a greater potential to introduce pleiotropic effects than the simple monogenic traits that currently dominate the plant biotechnology market. While research on unintended effects in transgenic plant systems has been instrumental in demonstrating the substantial equivalence of many transgenic plant systems, it is essential that such analyses be extended to transgenic plants engineered for stress tolerance. Drought-tolerant <it>Arabidopsis thaliana </it>were engineered through overexpression of the transcription factor <it>ABF3 </it>in order to investigate unintended pleiotropic effects. In order to eliminate position effects, the Cre/<it>lox </it>recombination system was used to create control plant lines that contain identical T-DNA insertion sites but with the <it>ABF3 </it>transgene excised. This additionally allowed us to determine if Cre recombinase can cause unintended effects that impact the transcriptome.</p> <p>Results</p> <p>Microarray analysis of control plant lines that underwent Cre-mediated excision of the <it>ABF3 </it>transgene revealed only two genes that were differentially expressed in more than one plant line, suggesting that the impact of Cre recombinase on the transcriptome was minimal. In the absence of drought stress, overexpression of <it>ABF3 </it>had no effect on the transcriptome, but following drought stress, differences were observed in the gene expression patterns of plants overexpressing <it>ABF3 </it>relative to control plants. Examination of the functional distribution of the differentially expressed genes revealed strong similarity indicating that unintended pathways were not activated.</p> <p>Conclusions</p> <p>The action of ABF3 is tightly controlled in <it>Arabidopsis</it>. In the absence of drought stress, ectopic activation of drought response pathways does not occur. In response to drought stress, overexpression of <it>ABF3 </it>results in a reprogramming of the drought response, which is characterized by changes in the timing or strength of expression of some drought response genes, without activating any unexpected gene networks. These results illustrate that important gene networks are highly regulated in <it>Arabidopsis </it>and that engineering stress tolerance may not necessarily cause extensive changes to the transcriptome.</p

    Engrailed cooperates directly with Extradenticle and Homothorax on a distinct class of homeodomain binding sites to repress sloppy paired.

    Get PDF
    Even skipped (Eve) and Engrailed (En) are homeodomain-containing transcriptional repressors with similar DNA binding specificities that are sequentially expressed in Drosophila embryos. The sloppy-paired (slp) locus is a target of repression by both Eve and En. At blastoderm, Eve is expressed in 7 stripes that restrict the posterior border of slp stripes, allowing engrailed (en) gene expression to be initiated in odd-numbered parasegments. En, in turn, prevents expansion of slp stripes after Eve is turned off. Prior studies showed that the two tandem slp transcription units are regulated by cis-regulatory modules (CRMs) with activities that overlap in space and time. An array of CRMs that generate 7 stripes at blastoderm, and later 14 stripes, surround slp1 (Fujioka and Jaynes, 2012). Surprisingly given their similarity in DNA binding specificity and function, responsiveness to ectopic Eve and En indicates that most of their direct target sites are either in distinct CRMs, or in different parts of coregulated CRMs. We localized cooperative binding sites for En, with the homeodomain-containing Hox cofactors Extradenticle (Exd) and Homothorax (Hth), within two CRMs that drive similar expression patterns. Functional analysis revealed two distinct, redundant sites within one CRM. The other CRM contains a single cooperative site that is both necessary and sufficient for repression in the en domain. Correlating in vivo and in vitro analysis suggests that cooperativity with Exd and Hth is a key ingredient in the mechanism of En-dependent repression, and that apparent affinity in vitro is an unreliable predictor of in vivo function

    Control of somatic embryogenesis and embryo development by AP2 transcription factors

    Get PDF
    Members of the AP2 family of transcription factors, such as BABY BOOM (BBM), play important roles in cell proliferation and embryogenesis in Arabidopsis thaliana (AtBBM) and Brassica napus (BnBBM) but how this occurs is not understood. We have isolated three AP2 genes (GmBBM1, GmAIL5, GmPLT2) from somatic embryo cultures of soybean, Glycine max (L.) Merr, and discovered GmBBM1 to be homologous to AtBBM and BnBBM. GmAIL5 and GmPLT2 were homologous to Arabidopsis AINTEGUMENTA-like5 (AIL5) and PLETHORA2 (PLT2), respectively. Constitutive expression of GmBBM1 in Arabidopsis induced somatic embryos on vegetative organs and other pleiotropic effects on post-germinative vegetative organ development. Sequence comparisons of BBM orthologues revealed the presence of ten sequence motifs outside of the AP2 DNA-binding domains. One of the motifs, bbm-1, was specific to the BBM-like genes. Deletion and domain swap analyses revealed that bbm-1 was important for somatic embryogenesis and acted cooperatively with at least one other motif, euANT2, in the regulation of somatic embryogenesis and embryo development in transgenic Arabidopsis. The results provide new insights into the mechanisms by which BBM governs embryogenesis

    AI ATAC 1: An Evaluation of Prominent Commercial Malware Detectors

    Full text link
    This work presents an evaluation of six prominent commercial endpoint malware detectors, a network malware detector, and a file-conviction algorithm from a cyber technology vendor. The evaluation was administered as the first of the Artificial Intelligence Applications to Autonomous Cybersecurity (AI ATAC) prize challenges, funded by / completed in service of the US Navy. The experiment employed 100K files (50/50% benign/malicious) with a stratified distribution of file types, including ~1K zero-day program executables (increasing experiment size two orders of magnitude over previous work). We present an evaluation process of delivering a file to a fresh virtual machine donning the detection technology, waiting 90s to allow static detection, then executing the file and waiting another period for dynamic detection; this allows greater fidelity in the observational data than previous experiments, in particular, resource and time-to-detection statistics. To execute all 800K trials (100K files Γ—\times 8 tools), a software framework is designed to choreographed the experiment into a completely automated, time-synced, and reproducible workflow with substantial parallelization. A cost-benefit model was configured to integrate the tools' recall, precision, time to detection, and resource requirements into a single comparable quantity by simulating costs of use. This provides a ranking methodology for cyber competitions and a lens through which to reason about the varied statistical viewpoints of the results. These statistical and cost-model results provide insights on state of commercial malware detection

    Beyond the Hype: A Real-World Evaluation of the Impact and Cost of Machine Learning-Based Malware Detection

    Full text link
    There is a lack of scientific testing of commercially available malware detectors, especially those that boast accurate classification of never-before-seen (i.e., zero-day) files using machine learning (ML). The result is that the efficacy and gaps among the available approaches are opaque, inhibiting end users from making informed network security decisions and researchers from targeting gaps in current detectors. In this paper, we present a scientific evaluation of four market-leading malware detection tools to assist an organization with two primary questions: (Q1) To what extent do ML-based tools accurately classify never-before-seen files without sacrificing detection ability on known files? (Q2) Is it worth purchasing a network-level malware detector to complement host-based detection? We tested each tool against 3,536 total files (2,554 or 72% malicious, 982 or 28% benign) including over 400 zero-day malware, and tested with a variety of file types and protocols for delivery. We present statistical results on detection time and accuracy, consider complementary analysis (using multiple tools together), and provide two novel applications of a recent cost-benefit evaluation procedure by Iannaconne & Bridges that incorporates all the above metrics into a single quantifiable cost. While the ML-based tools are more effective at detecting zero-day files and executables, the signature-based tool may still be an overall better option. Both network-based tools provide substantial (simulated) savings when paired with either host tool, yet both show poor detection rates on protocols other than HTTP or SMTP. Our results show that all four tools have near-perfect precision but alarmingly low recall, especially on file types other than executables and office files -- 37% of malware tested, including all polyglot files, were undetected.Comment: Includes Actionable Takeaways for SOC

    Architecture of Pol II(G) and molecular mechanism of transcription regulation by Gdown1.

    Get PDF
    Tight binding of Gdown1 represses RNA polymerase II (Pol II) function in a manner that is reversed by Mediator, but the structural basis of these processes is unclear. Although Gdown1 is intrinsically disordered, its Pol II interacting domains were localized and shown to occlude transcription factor IIF (TFIIF) and transcription factor IIB (TFIIB) binding by perfect positioning on their Pol II interaction sites. Robust binding of Gdown1 to Pol II is established by cooperative interactions of a strong Pol II binding region and two weaker binding modulatory regions, thus providing a mechanism both for tight Pol II binding and transcription inhibition and for its reversal. In support of a physiological function for Gdown1 in transcription repression, Gdown1 co-localizes with Pol II in transcriptionally silent nuclei of early Drosophila embryos but re-localizes to the cytoplasm during zygotic genome activation. Our study reveals a self-inactivation through Gdown1 binding as a unique mode of repression in Pol II function

    Combined analysis of transcriptome and metabolite data reveals extensive differences between black and brown nearly-isogenic soybean (Glycine max) seed coats enabling the identification of pigment isogenes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>R </it>locus controls the color of pigmented soybean (<it>Glycine max</it>) seeds. However information about its control over seed coat biochemistry and gene expressions remains limited. The seed coats of nearly-isogenic black (<it>iRT</it>) and brown (<it>irT</it>) soybean (<it>Glycine max</it>) were known to differ by the presence or absence of anthocyanins, respectively, with genes for only a single enzyme (anthocyanidin synthase) found to be differentially expressed between isolines. We recently identified and characterized a UDP-glycose:flavonoid-3-<it>O</it>-glycosyltransferase (<it>UGT78K1</it>) from the seed coat of black (<it>iRT</it>) soybean with the aim to engineer seed coat color by suppression of an anthocyanin-specific gene. However, it remained to be investigated whether <it>UGT78K1 </it>was overexpressed with anthocyanin biosynthesis in the black (<it>iRT</it>) seed coat compared to the nearly-isogenic brown (<it>irT</it>) tissue.</p> <p>In this study, we performed a combined analysis of transcriptome and metabolite data to elucidate the control of the R locus over seed coat biochemistry and to identify pigment biosynthesis genes. Two differentially expressed late-stage anthocyanin biosynthesis isogenes were further characterized, as they may serve as useful targets for the manipulation of soybean grain color while minimizing the potential for unintended effects on the plant system.</p> <p>Results</p> <p>Metabolite composition differences were found to not be limited to anthocyanins, with specific proanthocyanidins, isoflavones, and phenylpropanoids present exclusively in the black (<it>iRT</it>) or the brown (<it>irT</it>) seed coat. A global analysis of gene expressions identified <it>UGT78K1 </it>and 19 other anthocyanin, (iso)flavonoid, and phenylpropanoid isogenes to be differentially expressed between isolines. A combined analysis of metabolite and gene expression data enabled the assignment of putative functions to biosynthesis and transport isogenes. The recombinant enzymes of two genes were validated to catalyze late-stage steps in anthocyanin biosynthesis <it>in vitro </it>and expression profiles of the corresponding genes were shown to parallel anthocyanin biosynthesis during black (<it>iRT</it>) seed coat development.</p> <p>Conclusion</p> <p>Metabolite composition and gene expression differences between black (<it>iRT</it>) and brown (<it>irT</it>) seed coats are far more extensive than previously thought. Putative anthocyanin, proanthocyanidin, (iso)flavonoid, and phenylpropanoid isogenes were differentially-expressed between black (<it>iRT</it>) and brown (<it>irT</it>) seed coats, and <it>UGT78K2 </it>and <it>OMT5 </it>were validated to code UDP-glycose:flavonoid-3-<it>O</it>-glycosyltransferase and anthocyanin 3'-<it>O</it>-methyltransferase proteins <it>in vitro</it>, respectively. Duplicate gene copies for several enzymes were overexpressed in the black (<it>iRT</it>) seed coat suggesting more than one isogene may have to be silenced to engineer seed coat color using RNA interference.</p

    Evaluation of unclassified variants in the breast cancer susceptibility genes BRCA1 and BRCA2 using five methods: results from a population-based study of young breast cancer patients

    Get PDF
    Introduction Efforts are ongoing to determine the significance of unclassified variants (UVs) in the breast cancer susceptibility genes BRCA1/BRCA2, but no study has systematically assessed whether women carrying the suspected deleterious UVs have characteristics commonly seen among women carrying known deleterious or disease-causing mutations in BRCA1/BRCA2. Methods We sequenced BRCA1/BRCA2 in 1,469 population-based female breast cancer patients diagnosed between the ages of 20 and 49 years. We used existing literature to classify variants into known deleterious mutations, polymorphic variants, and UVs. The UVs were further classified as high risk or low risk based on five methods: allele frequency, Polyphen algorithm, sequence conservation, Grantham matrix scores, and a combination of the Grantham matrix score and sequence conservation. Furthermore, we examined whether patients who carry the variants classified as high risk using these methods have risk characteristics similar to patients with known deleterious BRCA1/BRCA2 mutations (early age at diagnosis, family history of breast cancer or ovarian cancer, and negative estrogen receptor/progesterone receptor). Results We identified 262 distinct BRCA1/BRCA2 variants, including 147 UVs, in our study population. The BRCA1 UV carriers, but not the BRCA2 UV carriers, who were classified as high risk using each classification method were more similar to the deleterious mutation carriers with respect to family history than those carriers classified as low risk. For example, the odds ratio of having a first-degree family history for the high-risk women classified using Polyphen was 3.39 (95% confidence interval = 1.16 to 9.94) compared with normal/polymorphic BRCA1 carriers. The corresponding odds ratio of low-risk women was 1.53 (95% confidence interval = 1.07 to 2.18). The odds ratio for high-risk women defined by allele frequency was 2.00 (95% confidence interval = 1.14 to 3.51), and that of low-risk women was 1.30 (95% confidence interval = 0.87 to 1.93). Conclusion The results suggest that the five classification methods yielded similar results. Polyphen was particularly better at isolating BRCA1 UV carriers likely to have a family history of breast cancer or ovarian cancer, and may therefore help to classify BRCA1 UVs. Our study suggests that these methods may not be as successful in classifying BRCA2 UVs

    The SUN Protein Mps3 Is Required for Spindle Pole Body Insertion into the Nuclear Membrane and Nuclear Envelope Homeostasis

    Get PDF
    The budding yeast spindle pole body (SPB) is anchored in the nuclear envelope so that it can simultaneously nucleate both nuclear and cytoplasmic microtubules. During SPB duplication, the newly formed SPB is inserted into the nuclear membrane. The mechanism of SPB insertion is poorly understood but likely involves the action of integral membrane proteins to mediate changes in the nuclear envelope itself, such as fusion of the inner and outer nuclear membranes. Analysis of the functional domains of the budding yeast SUN protein and SPB component Mps3 revealed that most regions are not essential for growth or SPB duplication under wild-type conditions. However, a novel dominant allele in the P-loop region, MPS3-G186K, displays defects in multiple steps in SPB duplication, including SPB insertion, indicating a previously unknown role for Mps3 in this step of SPB assembly. Characterization of the MPS3-G186K mutant by electron microscopy revealed severe over-proliferation of the inner nuclear membrane, which could be rescued by altering the characteristics of the nuclear envelope using both chemical and genetic methods. Lipid profiling revealed that cells lacking MPS3 contain abnormal amounts of certain types of polar and neutral lipids, and deletion or mutation of MPS3 can suppress growth defects associated with inhibition of sterol biosynthesis, suggesting that Mps3 directly affects lipid homeostasis. Therefore, we propose that Mps3 facilitates insertion of SPBs in the nuclear membrane by modulating nuclear envelope composition
    • …
    corecore