30 research outputs found

    Development of a New Method of Storage and Maximum Separation of Chlorophils From Chlorophylcontaining Vegetables at Reception of Healthfull Nanoproducts

    Get PDF
    The aim of the work is the development of a new way of deep processing of chlorophyll-containing vegetables that gives a possibility not only to preserve chlorophylls a and b and other biologically active substances (BAS) of raw materials, but also to transform hidden bound (inactive) forms of chlorophyll in the free easy-digestible form at getting steam-thermally processed semi-products and healthy food products in the nanoform.For achieving the aim, the complex effect of steam-thermal processing and mechanolysis at fine-dyspersed comminution using the new equipment was applied as an innovation for thermal processing and comminution.There was developed the new method of getting healthy products of chlorophyll-containing vegetables (broccoli, spinach, Brussels cabbage, green leguminous haricot bean), steam-thermally processed (by hot steam) in the steam-convectional stove and fine-dyspersed with high contents of chlorophylls and other BAS and prebiotics. The method is based on the complex effect of processes of thermodestruction, mechanodestruction and non-enzymatic catalysis on raw materials at fine-dyspersed comminution. It was demonstrated, that at steam thermal processing of chlorophyll-containing vegetables (CCV) in the steam-convectomat during 5 minutes, there takes place not only preservation of chlorophylls a and b, but more full separation (in 1,33
1,4 times) from the hidden (bound) form, comparing with fresh vegetables. There was elucidated the mechanism of this process. The more full extraction of hidden forms of ÎČ-carotene (2 times more than in fresh CCV) takes place in parallel.The essentially more effect of transforming hidden forms was revealed at fine-dyspersed comminution of steam-thermally processed CCV. It was demonstrated, that thermally processed nanoproducts of CCV contain 2
2,1 more chlorophylls a and b, 2,0
3,3 times more carotenoids in the bound form than fresh vegetables.The quality of obtained new types of fine-dyspersated steam-thermally processed green products as puree and soups-purees of CCV exceeds one of known analogues by contents of chlorophylls a and b, ÎČ-carotene and other BAS, which are in nanosize easy-digestible form.Using new types of fine-dyspersated purees of CCV, there was developed the new green line of healthy nanoproducts: soups-purees, nanodrinks, nanosorbets, sauces-dressings, sauces-deeps, ice-cream, snacks and so on. It was demonstrated, that new products exceed existing analogues by BAS content (chlorophylls, ÎČ-carotene, L-ascorbic acid, phenol compounds)

    Devising Manufacturing Techniques for Making Culinary Meals Using Vegetable Concentrates

    Full text link
    It is known that the vegetable concentrates' composition includes dietary fibers, micro-elements, color-forming substances, which can be successfully used as a substitute for the main substance in a formulation. This paper reports the development of a technique to process vegetables into vegetable semi-finished products, the formulations of culinary meals based on vegetable concentrates, as well as the techniques of their heat treatment using electrocontact heating (ECH).A technique to process vegetables into vegetable semi-finished products using carrot as an example implies the separation of raw materials into juice and pomace followed by separate processing of each component. Depending on the technological tasks, it is possible to obtain a vegetable concentrate by mixing juice and dried pomace. The colorimetric quality assessment has helped establish the parameters for juice and pomace processing. A carrot-based concentrate has been studied in terms of the content of the dried pomace. It was established that adding it improves the quality of the product, namely the brightness and color purity become better.It has been proposed to use carrot pomace in the formulations for different culinary meals provided the heat treatment process is intensified by combining convective heating and ECH. Carrot pomace was used in formulations for several culinary meals (rice pudding, millet balls, as well as unleavened pastry).The combined thermal treatment of experimental products involving ECH provided several advantages in terms of the technological indicators, namely: the duration of heat treatment decreases by 20...40 %, the output increases by 10...20 %, and energy consumption decreases by 23...32 %, which is an argument for its application.Based on the organoleptic assessment, it was noted that, in addition to the taste inherent in these products, the resulting products acquired a kind of pleasant taste of carrot, the increased juiciness and tenderness, which can attract the consume

    Developing a Model of the Foam Emulsion System and Confirming the Role of the Yield Stress Shear of Interfacial Adsorption Layers to Provide Its Formation and Stability

    Full text link
    The model of the formation of the foam emulsion by the emulsion whipping was developed. It was experimentally proved that the yield stress shear of interfacial adsorption layers can be used as a criterion for evaluating the stability of foams, emulsions and foam-emulsion systems. It was found that the introduction of DATEM to the reconstituted skimmed milk increases the yield stress shear of interfacial adsorption layers and stability of foams and emulsions. The introduction of lecithin's or DATEM reduces the yield stress shear of interfacial adsorption layers and stability of foams and emulsions accordingly. Simultaneous use of milk proteins, LACTEM, lecithin's and DATEM provides 1.3 times higher yield stress shear of interfacial adsorption layers at the water-air interface than at the water-oil interface, which is a thermodynamic condition for the formation of the foam emulsion by the emulsion whipping. It was proved that homogenization of the emulsion based on cocoa butter, milk proteins and surfactants provides destabilization of the emulsion and creates conditions for the flotation of destabilized fat particles.The results allow justifying the parameters of the technology of the whipped semi-finished product based on cocoa butter, which is the emulsion whipping of which provides the foaming capacity of 450±22 %, the mechanical strength of the foam emulsion of 3200±160 Pa. It was confirmed that the whipping process can be divided into three stages: foaming, emulsion destabilization and adhesion of fat particles to air bubbles, providing high mechanical strength of the foam emulsion

    Measuring KS0K± interactions using Pb–Pb collisions at √sNN=2.76 TeV

    No full text
    We present the first ever measurements of femtoscopic correlations between the K0 S and K± particles. The analysis was performed on the data from Pb–Pb collisions at √sNN = 2.76 TeV measured by the ALICE experiment. The observed femtoscopic correlations are consistent with final-state interactions proceeding via the a0(980) resonance. The extracted kaon source radius and correlation strength parameters for K0 SK− are found to be equal within the experimental uncertainties to those for K0 SK+. Comparing the results of the present study with those from published identical-kaon femtoscopic studies by ALICE, mass and coupling parameters for the a0 resonance are tested. Our results are also compatible with the interpretation of the a0 having a tetraquark structure instead of that of a diquar

    Study of the Λ–Λ interaction with femtoscopy correlations in pp and p–Pb collisions at the LHC

    No full text
    This work presents new constraints on the existence and the binding energy of a possible – bound state, the H-dibaryon, derived from – femtoscopic measurements by the ALICE collaboration. The results are obtained from a new measurement using the femtoscopy technique in pp collisions at √s = 13 TeV and p–Pb collisions at √sNN = 5.02 TeV, combined with previously published results from pp collisions at √s = 7 TeV. The – scattering parameter space, spanned by the inverse scattering length f −1 0 and the effective range d0, is constrained by comparing the measured – correlation function with calculations obtained within the LednickĂœ model. The data are compatible with hypernuclei results and lattice computations, both predicting a shallow attractive interaction, and permit to test different theoretical approaches describing the – interaction. The region in the (f −1 0 ,d0) plane which would accommodate a – bound state is substantially restricted compared to previous studies. The binding energy of the possible – bound state is estimated within an effective-range expansion approach and is found to be B = 3.2+1.6 −2.4(stat)+1.8 −1.0(syst) MeV

    HΛ3 and H‟Λ‟3 lifetime measurement in Pb–Pb collisions at √sNN=5.02 TeV via two-body decay

    No full text
    An improved value for the lifetime of the (anti-)hypertriton has been obtained using the data sample of Pb–Pb collisions at √sNN = 5.02 TeV collected by the ALICE experiment at the LHC. The (anti-)hypertriton has been reconstructed via its charged two-body mesonic decay channel and the lifetime has been determined from an exponential fit to the dN/d(ct) spectrum. The measured value, τ = 242+34 −38 (stat.) ± 17 (syst.) ps, is compatible with representative theoretical predictions, thus contributing to the solution of the longstanding hypertriton lifetime puzzle

    Direct observation of the dead-cone effect in quantum chromodynamics

    No full text
    The direct measurement of the QCD dead cone in charm quark fragmentation is reported, using iterative declustering of jets tagged with a fully reconstructed charmed hadron

    Multiplicity dependence of K*(892)0 and ϕ(1020) production in pp collisions at t √s=13 TeV

    No full text
    The striking similarities that have been observed between high-multiplicity proton-proton (pp) collisions and heavy-ion collisions can be explored through multiplicity-differential measurements of identified hadrons in pp collisions. With these measurements, it is possible to study mechanisms such as collective flow that determine the shapes of hadron transverse momentum (pT) spectra, to search for possible modifications of the yields of short-lived hadronic resonances due to scattering effects in an extended hadron-gas phase, and to investigate different explanations provided by phenomenological models for enhancement of strangeness production with increasing multiplicity. In this paper, these topics are addressed through measurements of the K∗(892)0 and φ(1020) mesons at midrapidity in pp collisions at √s = 13 TeV as a function of the charged-particle multiplicity. The results include the pT spectra, pT-integrated yields, mean transverse momenta, and the ratios of the yields of these resonances to those of longer-lived hadrons. Comparisons with results from other collision systems and energies, as well as predictions from phenomenological models, are also discussed

    Multiplicity dependence of inclusive J/ψ production at midrapidity in pp collisions at √s=13 TeV

    No full text
    Measurements of the inclusive J/ψ yield as a function of charged-particle pseudorapidity density dNch/dη in pp collisions at √s = 13 TeV with ALICE at the LHC are reported. The J/ψ meson yield is measured at midrapidity (|y| < 0.9) in the dielectron channel, for events selected based on the charged-particle multiplicity at midrapidity (|η| < 1) and at forward rapidity (−3.7 < η < −1.7 and 2.8 < η < 5.1); both observables are normalized to their corresponding averages in minimum bias events. The increase of the normalized J/ψ yield with normalized dNch/dη is significantly stronger than linear and dependent on the transverse momentum. The data are compared to theoretical predictions, which describe the observed trends well, albeit not always quantitatively
    corecore