Developing a Model of the Foam Emulsion System and Confirming the Role of the Yield Stress Shear of Interfacial Adsorption Layers to Provide Its Formation and Stability

Abstract

The model of the formation of the foam emulsion by the emulsion whipping was developed. It was experimentally proved that the yield stress shear of interfacial adsorption layers can be used as a criterion for evaluating the stability of foams, emulsions and foam-emulsion systems. It was found that the introduction of DATEM to the reconstituted skimmed milk increases the yield stress shear of interfacial adsorption layers and stability of foams and emulsions. The introduction of lecithin's or DATEM reduces the yield stress shear of interfacial adsorption layers and stability of foams and emulsions accordingly. Simultaneous use of milk proteins, LACTEM, lecithin's and DATEM provides 1.3 times higher yield stress shear of interfacial adsorption layers at the water-air interface than at the water-oil interface, which is a thermodynamic condition for the formation of the foam emulsion by the emulsion whipping. It was proved that homogenization of the emulsion based on cocoa butter, milk proteins and surfactants provides destabilization of the emulsion and creates conditions for the flotation of destabilized fat particles.The results allow justifying the parameters of the technology of the whipped semi-finished product based on cocoa butter, which is the emulsion whipping of which provides the foaming capacity of 450±22 %, the mechanical strength of the foam emulsion of 3200±160 Pa. It was confirmed that the whipping process can be divided into three stages: foaming, emulsion destabilization and adhesion of fat particles to air bubbles, providing high mechanical strength of the foam emulsion

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 07/06/2020