2,772 research outputs found

    Zero curvature representation for a new fifth-order integrable system

    Full text link
    In this brief note we present a zero-curvature representation for one of the new integrable system found by Mikhailov, Novikov and Wang in nlin.SI/0601046.Comment: 2 pages, LaTeX 2e, no figure

    Two ground-state modifications of quantum-dot beryllium

    Full text link
    Exact electronic properties of a system of four Coulomb-interacting two-dimensional electrons in a parabolic confinement are reported. We show that degenerate ground states of this system are characterized by qualitatively different internal electron-electron correlations, and that the formation of Wigner molecule in the strong-interaction regime is going on in essentially different ways in these ground states.Comment: 5 pages, incl 5 Figures and 2 Table

    Binding of the baculovirus very late expression factor 1 (VLF-1) to different DNA structures

    Get PDF
    BACKGROUND: Baculovirus genomes encode a gene called very late expression factor 1 (VLF-1) that is a member of the integrase (Int) family of proteins. In this report we describe the binding properties of purified Autographa californica multiple capsid nucleopolyhedrovirus (AcMNPV) VLF-1 to a number of different DNA structures including homologous regions. In addition, its enzymatic activity was examined. RESULTS: VLF-1 was expressed in a recombinant baculovirus as a fusion with both HA and HIS(6) tags and its binding activity to different DNA structures was tested. No binding was evident to single and double strand structures, very low binding was observed to Y-forks, more binding was observed to three-way junctions, whereas cruciform structures showed high levels of binding. VLF-1 binding was affected by divalent cations; optimal binding to three-way junctions and cruciforms was 2 and 0 mM MgCl(2), respectively. Homologous region (hr) sequences was also examined including oligomers designed to expose the hr palindrome as a hairpin, linear double strand, or H-shaped structure. Efficient binding was observed to the hairpin and H-shaped structure. No topoisomerase or endonuclease activity was detected. Sedimentation analysis indicated that *VLF-1 is present as a monomer. CONCLUSIONS: An HA- and HIS-tagged version of AcMNPV VLF-1 showed structure-dependent binding to DNA substrates with the highest binding affinity to cruciform DNA. These results are consistent with the involvement of VLF-1 in the processing of branched DNA molecules at the late stages of viral genome replication. We were unable to detect enzymatic activity associated with these complexes

    Enhanced graphene nonlinear response through geometrical plasmon focusing

    Get PDF
    We propose a simple approach to couple light into graphene plasmons and focus these excitations at focal spots of a size determined by the plasmon wavelength, thus producing high optical field enhancement that boosts the nonlinear response of the material. More precisely, we consider a graphene structure in which incident light is coupled to its plasmons at the carbon edges and subsequently focused on a spot of size comparable to the plasmon wavelength. We observe large confinement of graphene plasmons, materializing in small, intense focal spots, in which the extraordinary nonlinear response of this material leads to relatively intense harmonic generation. This result shows the potential of plasmon focusing in suitably edged graphene structures to produce large field confinement and nonlinear response without involving elaborated nanostructuring.Peer ReviewedPostprint (published version

    Observation of inter-edge magnetoplasmon mode in a degenerate two-dimensional electron gas

    Get PDF
    We study the propagation of edge magnetoplasmons by time-resolved current measurements in a sample which allows for selective detection of edge states in the quantum Hall regime. We observe two decoupled modes of edge and inter-edge magnetoplasmons at filling factors close to 3. From the analysis of the propagation velocities of each mode the internal spatial parameters of the edge structure are derived.Comment: 4 pages, 4 figures, submitte

    Structural and functional analysis of the baculovirus single-stranded DNA-binding protein LEF-3

    Get PDF
    AbstractThe single-stranded DNA-binding protein LEF-3 of Autographa californica multinucleocapsid nucleopolyhedrovirus consists of 385 amino acid residues, forms oligomers, and promotes Mg2+-independent unwinding of DNA duplexes and annealing of complementary DNA strands. Partial proteolysis revealed that the DNA-binding domain of LEF-3 is located within a central region (residues 28 to 326) that is relatively resistant to proteolysis. In contrast, the N-terminus (27 residues) and C-terminal portion (59 residues) are not involved in interaction with DNA and are readily accessible to proteolytic digestion. Circular dichroism analyses showed that LEF-3 is a folded protein with an estimated α-helix content of more than 40%, but it is structurally unstable and undergoes unfolding in aqueous solutions at temperatures near 50 °C. Unfolding eliminated the LEF-3 domains that are resistant to proteolysis and randomized the digestion pattern by trypsin. The structural transition was irreversible and was accompanied by the generation of high molecular weight (MW) complexes. The thermal treatment inhibited DNA-binding and unwinding activity of LEF-3 but markedly stimulated its annealing activity. We propose that the shift in LEF-3 activities resulted from the generation of the high MW protein complexes, that specifically stimulate the annealing of complementary DNA strands by providing multiple DNA-binding sites and bringing into close proximity the interacting strands. The unfolded LEF-3 was active in a strand exchange reaction suggesting that it could be involved in the production of recombination intermediates

    Self-propelled particles with fluctuating speed and direction of motion

    Get PDF
    We study general aspects of active motion with fluctuations in the speed and the direction of motion in two dimensions. We consider the case in which fluctuations in the speed are not correlated to fluctuations in the direction of motion, and assume that both processes can be described by independent characteristic time-scales. We show the occurrence of a complex transient that can exhibit a series of alternating regimes of motion, for two different angular dynamics which correspond to persistent and directed random walks. We also show additive corrections to the diffusion coefficient. The characteristic time-scales are also exposed in the velocity autocorrelation, which is a sum of exponential forms.Comment: to appear in Phys. Rev. Let

    Representations of sl(2,?) in category O and master symmetries

    Get PDF
    We show that the indecomposable sl(2,?)-modules in the Bernstein-Gelfand-Gelfand category O naturally arise for homogeneous integrable nonlinear evolution systems. We then develop a new approach called the O scheme to construct master symmetries for such integrable systems. This method naturally allows computing the hierarchy of time-dependent symmetries. We finally illustrate the method using both classical and new examples. We compare our approach to the known existing methods used to construct master symmetries. For new integrable equations such as a Benjamin-Ono-type equation, a new integrable Davey-Stewartson-type equation, and two different versions of (2+1)-dimensional generalized Volterra chains, we generate their conserved densities using their master symmetries

    Plasma instability and amplification of electromagnetic waves in low-dimensional electron systems

    Full text link
    A general electrodynamic theory of a grating coupled two dimensional electron system (2DES) is developed. The 2DES is treated quantum mechanically, the grating is considered as a periodic system of thin metal strips or as an array of quantum wires, and the interaction of collective (plasma) excitations in the system with electromagnetic field is treated within the classical electrodynamics. It is assumed that a dc current flows in the 2DES. We consider a propagation of an electromagnetic wave through the structure, and obtain analytic dependencies of the transmission, reflection, absorption and emission coefficients on the frequency of light, drift velocity of 2D electrons, and other physical and geometrical parameters of the system. If the drift velocity of 2D electrons exceeds a threshold value, a current-driven plasma instability is developed in the system, and an incident far infrared radiation is amplified. We show that in the structure with a quantum wire grating the threshold velocity of the amplification can be essentially reduced, as compared to the commonly employed metal grating, down to experimentally achievable values. Physically this is due to a considerable enhancement of the grating coupler efficiency because of the resonant interaction of plasma modes in the 2DES and in the grating. We show that tunable far infrared emitters, amplifiers and generators can thus be created at realistic parameters of modern semiconductor heterostructures.Comment: 28 pages, 15 figures, submitted to Phys. Rev.
    • …
    corecore