11 research outputs found

    INVESTIGATION OF THE INFLUENCE OF THE PROCESS OF FREEZING ON MICROBIOLOGICAL FACTORS OF SAFETY OF FROZEN SEMI-PRODUCT FOR COOKING DRINK SMOOTHIE

    Get PDF
    A semi-product for cooking a smoothie drink was chosen as a subject of the study. It included strawberries, dried apples and oat flocks. A sample was frozen in a low-temperature calorimeter to –20 Β°Π‘. It was established, that freezing at–20Β±2 Β°Π‘ favors the full conservation of a sample and storage during 270 days. The results of the organoleptic evaluation of the semi-product before freezing and after refrigeratory storage during 270 demonstrated that the product is characterized by a high quality. Microbiological parameters of the fresh and frozen semi-product were studied for a quantity of mesophilic aerobic and facultative-anaerobic microorganisms (QMAFMAnM). And also for bacteria of the colibacillus group (BGCB), pathogenic microorganisms of bacteria of Salmonella genus, molds and yeast. The gram-negative microflora – bacteria of the colibacillus group, pathogenic microorganisms including bacteria of Salmonella genus, were not observed in samples of frozen semi-products. The studies demonstrated freezing advantages from both aspects of minimization of losses of valuable biocomponents of the raw material and of achieving high organoleptic parameters of products after freezing and defrosting. The observance of optimal conditions of freezing excludes the necessity of the additional use of artificial preservatives, provides high-quality products and safety that corresponds to all principles of healthy nutrition

    nNOS regulates ciliated cell polarity, ciliary beat frequency, and directional flow in mouse trachea.

    Get PDF
    Clearance of the airway is dependent on directional mucus flow across the mucociliary epithelium, and deficient flow is implicated in a range of human disorders. Efficient flow relies on proper polarization of the multiciliated cells and sufficient ciliary beat frequency. We show that NO, produced by nNOS in the multiciliated cells of the mouse trachea, controls both the planar polarity and the ciliary beat frequency and is thereby necessary for the generation of the robust flow. The effect of nNOS on the polarity of ciliated cells relies on its interactions with the apical networks of actin and microtubules and involves RhoA activation. The action of nNOS on the beat frequency is mediated by guanylate cyclase; both NO donors and cGMP can augment fluid flow in the trachea and rescue the deficient flow in nNOS mutants. Our results link insufficient availability of NO in ciliated cells to defects in flow and ciliary activity and may thereby explain the low levels of exhaled NO in ciliopathies

    Seasonal hydrological and hydrochemical surveys in the Voevoda Bay (Amur Bay, Japan Sea)

    Get PDF
    Hydrological and hydrochemical surveys were conducted in the Voevoda Bay in May, August, and October, 2011 and February, 2012, in total 140 stations. Free water exchange of the bay with the Amur Bay is observed, with exception of its inner bights Kruglaya and Melkovodnaya. The water exchange is maintained by anticyclonic circulation with the inflow along the southern coast and outflow along the northern coast of the Voyevoda Bay. However, the opposite cyclonic circulation is observed in the Melkovodanaya Bight because of its coastal line patterns and fresh water discharge by the river. Dissolved oxygen content and partial pressure of CO2 in the bay waters are determined mostly by intensive processes of production and destruction of organic matter. There are three main groups of primary producers there, as diatom algae, sea grass Zostera marina , and periphyton. Specific chemical regime is formed in the Melkovodnaya Bight, in particular in winter when primary production depends on the ice cover and is driven by variations of photosynthetically active radiation passed through the ice. Seasonal variability of production-destruction processes intensity is discussed on the data of chemical parameters changes

    ΠšΡ€Ρ–ΠΎΡΠΊΠΎΠΏΡ–Ρ‡Π½Ρ– Ρ‚Π° ΠΌΡ–ΠΊΡ€ΠΎΠ±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρ– дослідТСння Π½Π°ΠΏΡ–Π²Ρ„Π°Π±Ρ€ΠΈΠΊΠ°Ρ‚Ρƒ для приготування напою смузі

    No full text
    The dynamics of freezing a semi-finished product for making a smoothie drink was investigated. We have chosen, as the subject of present study, a semi-finished product whose production technology included strawberry, dried apple, and oat flakes.By using a low temperature calorimeter, crystallization ranges for the examined semi-finished product, as well as the amount of frozen moisture, which was 68.6 %, were identified. It is established that freezing at βˆ’20Β±2 Β°C contributes to the complete preservation of the sample, and its further storing at the temperature within such limits ensures its storage over a long period of time. It was also experimentally established that the curves of freezing and defrosting of the sample do not coincide, that is, the character of temperature dependence during freezing and defrosting is different. This testifies to the irreversibility of plant tissue during ice formation and thawing.A reduction in the total microbial contamination over a long refrigeration storing is established, which indicates a negative effect of cold on the viability of microorganisms. The amount of mesophilic-aerobic and optionally anaerobic microorganisms in 30, 60, 90, 180, and 270 days of refrigeration at βˆ’18Β±2 Β°C is significantly reduced compared to freshly prepared. The amount of yeast and mild fungi also decreases during storage. It is important to comply with sanitary and hygienic standards during production, packaging, storing, and selling, since the complete extinction of the microflora does not occur.The development and active introduction of effective freezing technologies, low temperature storage, and processing of fruits and berries would contribute to solving a task on the balanced nutrition of people, reducing the level of diseases, improving quality of life. In addition, the introduction of such technologies would significantly enlarge the base of local processing industry whose development, in turn, would contribute to the development of agricultural production in a given region.The data obtained data could be applied to determine the rational freezing and defrosting modes for a semi-finished product and would make it possible to extend the assortment of frozen products.Π˜Π·ΡƒΡ‡Π΅Π½Π° Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° замораТивания ΠΏΠΎΠ»ΡƒΡ„Π°Π±Ρ€ΠΈΠΊΠ°Ρ‚Π° для приготовлСния Π½Π°ΠΏΠΈΡ‚ΠΊΠ° смузи. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π½ΠΈΠ·ΠΊΠΎΡ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠ³ΠΎ ΠΊΠ°Π»ΠΎΡ€ΠΈΠΌΠ΅Ρ‚Ρ€Π° установлСны Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Ρ‹ кристаллизации ΠΈ количСство Π²Ρ‹ΠΌΠΎΡ€ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ Π²Π»Π°Π³ΠΈ исслСдуСмого ΠΏΠΎΠ»ΡƒΡ„Π°Π±Ρ€ΠΈΠΊΠ°Ρ‚Π°. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ микробиологичСских исслСдований, выявлСно количСствСнноС ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΌΠΈΠΊΡ€ΠΎΡ„Π»ΠΎΡ€Ρ‹ Π² процСссС Π½ΠΈΠ·ΠΊΠΎΡ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠ³ΠΎ хранСния. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ для опрСдСлСния Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² замораТивания ΠΈ размораТивания ΠΏΠΎΠ»ΡƒΡ„Π°Π±Ρ€ΠΈΠΊΠ°Ρ‚Π° ΠΈ Π΄Π°Π΄ΡƒΡ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Ρ€Π°ΡΡˆΠΈΡ€ΠΈΡ‚ΡŒ ассортимСнт Π·Π°ΠΌΠΎΡ€ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈΠ’ΠΈΠ²Ρ‡Π΅Π½ΠΎ Π΄ΠΈΠ½Π°ΠΌΡ–ΠΊΡƒ замороТування Π½Π°ΠΏΡ–Π²Ρ„Π°Π±Ρ€ΠΈΠΊΠ°Ρ‚Ρƒ для приготування напою смузі. Π—Π° допомогою Π½ΠΈΠ·ΡŒΠΊΠΎΡ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠ³ΠΎ ΠΊΠ°Π»ΠΎΡ€ΠΈΠΌΠ΅Ρ‚Ρ€Ρƒ встановлСні Π΄Ρ–Π°ΠΏΠ°Π·ΠΎΠ½ΠΈ кристалізації Ρ‚Π° ΠΊΡ–Π»ΡŒΠΊΡ–ΡΡ‚ΡŒ Π²ΠΈΠΌΠΎΡ€ΠΎΠΆΠ΅Π½ΠΎΡ— Π²ΠΎΠ»ΠΎΠ³ΠΈ дослідТуваного Π½Π°ΠΏΡ–Π²Ρ„Π°Π±Ρ€ΠΈΠΊΠ°Ρ‚Ρƒ. НавСдСно Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ ΠΌΡ–ΠΊΡ€ΠΎΠ±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ, встановлСно ΠΊΡ–Π»ΡŒΠΊΡ–ΡΠ½Ρƒ Π·ΠΌΡ–Π½Ρƒ ΠΌΡ–ΠΊΡ€ΠΎΡ„Π»ΠΎΡ€ΠΈ Ρƒ процСсі Π½ΠΈΠ·ΡŒΠΊΠΎΡ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠ³ΠΎ збСрігання. ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Π΄Π°Π½Ρ– ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π±ΡƒΡ‚ΠΈ використані для визначСння Ρ€Π°Ρ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΈΡ… Ρ€Π΅ΠΆΠΈΠΌΡ–Π² замороТування Ρ‚Π° розмороТування Π½Π°ΠΏΡ–Π²Ρ„Π°Π±Ρ€ΠΈΠΊΠ°Ρ‚Ρƒ Ρ– Π΄Π°Π΄ΡƒΡ‚ΡŒ ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ Ρ€ΠΎΠ·ΡˆΠΈΡ€ΠΈΡ‚ΠΈ асортимСнт Π·Π°ΠΌΠΎΡ€ΠΎΠΆΠ΅Π½ΠΎΡ— ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†Ρ–

    Cryoscopic and microbiological study of the semiΒ­finished product for making a smoothie drink

    No full text
    The dynamics of freezing a semi-finished product for making a smoothie drink was investigated. We have chosen, as the subject of present study, a semi-finished product whose production technology included strawberry, dried apple, and oat flakes.By using a low temperature calorimeter, crystallization ranges for the examined semi-finished product, as well as the amount of frozen moisture, which was 68.6 %, were identified. It is established that freezing at βˆ’20Β±2 Β°C contributes to the complete preservation of the sample, and its further storing at the temperature within such limits ensures its storage over a long period of time. It was also experimentally established that the curves of freezing and defrosting of the sample do not coincide, that is, the character of temperature dependence during freezing and defrosting is different. This testifies to the irreversibility of plant tissue during ice formation and thawing.A reduction in the total microbial contamination over a long refrigeration storing is established, which indicates a negative effect of cold on the viability of microorganisms. The amount of mesophilic-aerobic and optionally anaerobic microorganisms in 30, 60, 90, 180, and 270 days of refrigeration at βˆ’18Β±2 Β°C is significantly reduced compared to freshly prepared. The amount of yeast and mild fungi also decreases during storage. It is important to comply with sanitary and hygienic standards during production, packaging, storing, and selling, since the complete extinction of the microflora does not occur.The development and active introduction of effective freezing technologies, low temperature storage, and processing of fruits and berries would contribute to solving a task on the balanced nutrition of people, reducing the level of diseases, improving quality of life. In addition, the introduction of such technologies would significantly enlarge the base of local processing industry whose development, in turn, would contribute to the development of agricultural production in a given region.The data obtained data could be applied to determine the rational freezing and defrosting modes for a semi-finished product and would make it possible to extend the assortment of frozen products.Π˜Π·ΡƒΡ‡Π΅Π½Π° Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° замораТивания ΠΏΠΎΠ»ΡƒΡ„Π°Π±Ρ€ΠΈΠΊΠ°Ρ‚Π° для приготовлСния Π½Π°ΠΏΠΈΡ‚ΠΊΠ° смузи. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π½ΠΈΠ·ΠΊΠΎΡ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠ³ΠΎ ΠΊΠ°Π»ΠΎΡ€ΠΈΠΌΠ΅Ρ‚Ρ€Π° установлСны Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Ρ‹ кристаллизации ΠΈ количСство Π²Ρ‹ΠΌΠΎΡ€ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ Π²Π»Π°Π³ΠΈ исслСдуСмого ΠΏΠΎΠ»ΡƒΡ„Π°Π±Ρ€ΠΈΠΊΠ°Ρ‚Π°. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ микробиологичСских исслСдований, выявлСно количСствСнноС ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΌΠΈΠΊΡ€ΠΎΡ„Π»ΠΎΡ€Ρ‹ Π² процСссС Π½ΠΈΠ·ΠΊΠΎΡ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠ³ΠΎ хранСния. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ для опрСдСлСния Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² замораТивания ΠΈ размораТивания ΠΏΠΎΠ»ΡƒΡ„Π°Π±Ρ€ΠΈΠΊΠ°Ρ‚Π° ΠΈ Π΄Π°Π΄ΡƒΡ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Ρ€Π°ΡΡˆΠΈΡ€ΠΈΡ‚ΡŒ ассортимСнт Π·Π°ΠΌΠΎΡ€ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈΠ’ΠΈΠ²Ρ‡Π΅Π½ΠΎ Π΄ΠΈΠ½Π°ΠΌΡ–ΠΊΡƒ замороТування Π½Π°ΠΏΡ–Π²Ρ„Π°Π±Ρ€ΠΈΠΊΠ°Ρ‚Ρƒ для приготування напою смузі. Π—Π° допомогою Π½ΠΈΠ·ΡŒΠΊΠΎΡ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠ³ΠΎ ΠΊΠ°Π»ΠΎΡ€ΠΈΠΌΠ΅Ρ‚Ρ€Ρƒ встановлСні Π΄Ρ–Π°ΠΏΠ°Π·ΠΎΠ½ΠΈ кристалізації Ρ‚Π° ΠΊΡ–Π»ΡŒΠΊΡ–ΡΡ‚ΡŒ Π²ΠΈΠΌΠΎΡ€ΠΎΠΆΠ΅Π½ΠΎΡ— Π²ΠΎΠ»ΠΎΠ³ΠΈ дослідТуваного Π½Π°ΠΏΡ–Π²Ρ„Π°Π±Ρ€ΠΈΠΊΠ°Ρ‚Ρƒ. НавСдСно Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ ΠΌΡ–ΠΊΡ€ΠΎΠ±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ, встановлСно ΠΊΡ–Π»ΡŒΠΊΡ–ΡΠ½Ρƒ Π·ΠΌΡ–Π½Ρƒ ΠΌΡ–ΠΊΡ€ΠΎΡ„Π»ΠΎΡ€ΠΈ Ρƒ процСсі Π½ΠΈΠ·ΡŒΠΊΠΎΡ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠ³ΠΎ збСрігання. ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Π΄Π°Π½Ρ– ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π±ΡƒΡ‚ΠΈ використані для визначСння Ρ€Π°Ρ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΈΡ… Ρ€Π΅ΠΆΠΈΠΌΡ–Π² замороТування Ρ‚Π° розмороТування Π½Π°ΠΏΡ–Π²Ρ„Π°Π±Ρ€ΠΈΠΊΠ°Ρ‚Ρƒ Ρ– Π΄Π°Π΄ΡƒΡ‚ΡŒ ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ Ρ€ΠΎΠ·ΡˆΠΈΡ€ΠΈΡ‚ΠΈ асортимСнт Π·Π°ΠΌΠΎΡ€ΠΎΠΆΠ΅Π½ΠΎΡ— ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†Ρ–

    INVESTIGATION OF THE INFLUENCE OF THE PROCESS OF FREEZING ON MICROBIOLOGICAL FACTORS OF SAFETY OF FROZEN SEMI-PRODUCT FOR COOKING DRINK SMOOTHIE

    No full text
    A semi-product for cooking a smoothie drink was chosen as a subject of the study. It included strawberries, dried apples and oat flocks. A sample was frozen in a low-temperature calorimeter to –20 Β°Π‘. It was established, that freezing at–20Β±2 Β°Π‘ favors the full conservation of a sample and storage during 270 days. The results of the organoleptic evaluation of the semi-product before freezing and after refrigeratory storage during 270 demonstrated that the product is characterized by a high quality.Microbiological parameters of the fresh and frozen semi-product were studied for a quantity of mesophilic aerobic and facultative-anaerobic microorganisms (QMAFMAnM). And also for bacteria of the colibacillus group (BGCB), pathogenic microorganisms of bacteria of Salmonella genus, molds and yeast. The gram-negative microflora – bacteria of the colibacillus group, pathogenic microorganisms including bacteria of Salmonella genus, were not observed in samples of frozen semi-products.The studies demonstrated freezing advantages from both aspects of minimization of losses of valuable biocomponents of the raw material and of achieving high organoleptic parameters of products after freezing and defrosting. The observance of optimal conditions of freezing excludes the necessity of the additional use of artificial preservatives, provides high-quality products and safety that corresponds to all principles of healthy nutrition

    Cryoscopic and Microbiological Study of the SemiΒ­finished Product for Making a Smoothie Drink

    Full text link
    The dynamics of freezing a semi-finished product for making a smoothie drink was investigated. We have chosen, as the subject of present study, a semi-finished product whose production technology included strawberry, dried apple, and oat flakes.By using a low temperature calorimeter, crystallization ranges for the examined semi-finished product, as well as the amount of frozen moisture, which was 68.6 %, were identified. It is established that freezing at βˆ’20Β±2 Β°C contributes to the complete preservation of the sample, and its further storing at the temperature within such limits ensures its storage over a long period of time. It was also experimentally established that the curves of freezing and defrosting of the sample do not coincide, that is, the character of temperature dependence during freezing and defrosting is different. This testifies to the irreversibility of plant tissue during ice formation and thawing.A reduction in the total microbial contamination over a long refrigeration storing is established, which indicates a negative effect of cold on the viability of microorganisms. The amount of mesophilic-aerobic and optionally anaerobic microorganisms in 30, 60, 90, 180, and 270 days of refrigeration at βˆ’18Β±2 Β°C is significantly reduced compared to freshly prepared. The amount of yeast and mild fungi also decreases during storage. It is important to comply with sanitary and hygienic standards during production, packaging, storing, and selling, since the complete extinction of the microflora does not occur.The development and active introduction of effective freezing technologies, low temperature storage, and processing of fruits and berries would contribute to solving a task on the balanced nutrition of people, reducing the level of diseases, improving quality of life. In addition, the introduction of such technologies would significantly enlarge the base of local processing industry whose development, in turn, would contribute to the development of agricultural production in a given region.The data obtained data could be applied to determine the rational freezing and defrosting modes for a semi-finished product and would make it possible to extend the assortment of frozen products

    Sr and Nd isotopes in hydrogenetic ferromanganese crusts from the North Pacific

    No full text
    ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ исслСдования обусловлСна Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ познания Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ Π½Π°ΡƒΡ‡Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ - ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹ΠΉ Ρ€ΡƒΠ΄ΠΎΠ³Π΅Π½Π΅Π· ΠœΠΈΡ€ΠΎΠ²ΠΎΠ³ΠΎ ΠΎΠΊΠ΅Π°Π½Π°. Помимо пСрспСктивного ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΡΡ‹Ρ€ΡŒΡ, морскиС ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Π΅ образования ΡΠ²Π»ΡΡŽΡ‚ΡΡ рСгистраторами условий сСдимСнтации Π² ΠΏΡ€ΠΎΡˆΠ»ΠΎΠΌ. Π˜Ρ… Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ осущСствляСтся ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… процСссах, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Ρ‹ Π² вСщСствСнном ΠΈ ΠΈΠ·ΠΎΡ‚ΠΎΠΏΠ½ΠΎΠΌ составС. Π’ настоящСС врСмя Π½Π°ΠΈΠΌΠ΅Π½Π΅Π΅ ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌ Ρ€Π΅Π³ΠΈΠΎΠ½ΠΎΠΌ Π’ΠΈΡ…ΠΎΠ³ΠΎ ΠΎΠΊΠ΅Π°Π½Π° являСтся Π΅Π³ΠΎ сСвСрный сСгмСнт. ЦСль: ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΈΠ·ΠΎΡ‚ΠΎΠΏΠ½Ρ‹ΠΉ состав Sr ΠΈ Nd ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Ρ… ΠΊΠΎΡ€ΠΎΠΊ сСвСрной ΠŸΠ°Ρ†ΠΈΡ„ΠΈΠΊΠΈ, Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ…ΡΡ Π² условиях Π½ΠΈΠ·ΠΊΠΎΠ³ΠΎ Ρ‚Π΅Ρ€Ρ€ΠΈΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ°. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹: Π»ΠΈΡ‚ΠΎΠ»ΠΎΠ³ΠΎ-морфогСнСтичСский; рСнтгСноструктурный - ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ состава; масс- спСктромСтричСский - ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ химичСского ΠΈ ΠΈΠ·ΠΎΡ‚ΠΎΠΏΠ½ΠΎΠ³ΠΎ состава. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ‹ ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Π΅ образования Π³Π°ΠΉΠΎΡ‚ΠΎΠ² сСвСрной части Π˜ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€ΡΠΊΠΎΠ³ΠΎ Ρ…Ρ€Π΅Π±Ρ‚Π° (Π”Π΅Ρ‚Ρ€ΠΎΠΉΡ‚, БьюзСй, Π₯Π°Π½Π·Π΅ΠΉ) ΠΈ Ρ€Π°Π·Π»ΠΎΠΌΠ½Ρ‹Ρ… Π·ΠΎΠ½ Амлия, Π Π°Ρ‚ ΠΈ Π‘Ρ‚Π΅ΠΉΠ»ΠΌΠ΅ΠΉΡ‚, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π³Π°ΠΉΠΎΡ‚Π° Π’ΡƒΠ»ΠΊΠ°Π½ΠΎΠ»ΠΎΠ³ (ΠœΠ°Π³Π΅Π»Π»Π°Π½ΠΎΠ²Ρ‹ Π³ΠΎΡ€Ρ‹) Π² качСствС ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°. На основании тСкстурно-структурных ΠΈ ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΠΎΠ³ΠΎ-гСохимичСских особСнностСй ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Π΅ образования отнСсСны ΠΊ Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π½Π½Ρ‹ΠΌ ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹ΠΌ ΠΊΠΎΡ€ΠΊΠ°ΠΌ. Π˜Π·ΠΎΡ‚ΠΎΠΏΠ½Ρ‹ΠΉ состав стронция ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² находится Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ ΠΎΡ‚ 0,70797 Π΄ΠΎ 0,70919 (срСднСС 0,70885). ΠŸΡ€ΠΈ этом содСрТаниС стронция измСняСтся ΠΏΠΎΡ‡Ρ‚ΠΈ Π² Ρ‚Ρ€ΠΈ Ρ€Π°Π·Π° - ΠΎΡ‚ 660 Π΄ΠΎ 1700 Π³/Ρ‚. Зависимости ΠΈΠ·ΠΎΡ‚ΠΎΠΏΠ½ΠΎΠ³ΠΎ состава ΠΎΡ‚ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Sr Π½Π΅ отмСчаСтся. Π‘ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ 87Sr/86Sr происходит ΠΊ Π΅Π³ΠΎ значСниям, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹ΠΌ для вулканичСских ΠΏΠΎΡ€ΠΎΠ΄, Ρ‡Ρ‚ΠΎ являСтся ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ высокого количСства ΠΊΠ²Π°Ρ€Ρ†-ΠΏΠ»Π°Π³ΠΈΠΎΠΊΠ»Π°Π·ΠΎΠ²ΠΎΠΉ примСси Π² ΠΎΠ±Ρ€Π°Π·Ρ†Π΅. Π˜Π·ΠΎΡ‚ΠΎΠΏΠ½Ρ‹ΠΉ состав Π½Π΅ΠΎΠ΄ΠΈΠΌΠ° Π² пСрСсчСтС Π½Π° Ξ΅Nd Π²Π°Ρ€ΡŒΠΈΡ€ΡƒΠ΅Ρ‚ Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ ΠΎΡ‚ -3,5 Π΄ΠΎ -3,0, Ρ‡Ρ‚ΠΎ соотвСтствуСт соврСмСнному Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ Π³Π»ΡƒΠ±ΠΈΠ½Π½ΠΎΠΉ Π²ΠΎΠ΄Ρ‹ сСвСрной ΠŸΠ°Ρ†ΠΈΡ„ΠΈΠΊΠΈ. ΠŸΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ значСния Ξ΅Nd Π΄ΠΎ -2,3 соотвСтствуСт ΠΏΡ€ΠΎΠ±Π΅ с максимальной Π°Π»Π»ΠΎΡ‚ΠΈΠ³Π΅Π½Π½ΠΎΠΉ ΠΏΡ€ΠΈΠΌΠ΅ΡΡŒΡŽ. МинимальноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Ξ΅Nd (-4,4) установлСно Π² подошвСнном слоС ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²ΠΎΠΉ ΠΊΠΎΡ€ΠΊΠΈ Π³Π°ΠΉΠΎΡ‚Π° Π₯Π°Π½Π·Π΅ΠΉ. Π’Π°ΠΊΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ соотвСтствуСт ΠΌΠΈΠΎΡ†Π΅Π½ΠΎΠ²ΠΎΠΉ Π³Π»ΡƒΠ±ΠΈΠ½Π½ΠΎΠΉ Π²ΠΎΠ΄Π΅ сСвСрной ΠŸΠ°Ρ†ΠΈΡ„ΠΈΠΊΠΈ. Π­Ρ‚ΠΎ являСтся основаниСм ΠΏΠΎΠ»Π°Π³Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π² ΠΌΠΈΠΎΡ†Π΅Π½Π΅ Π½Π° Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ вСщСствСнного состава ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Ρ… ΠΊΠΎΡ€ΠΎΠΊ сСвСрной ΠŸΠ°Ρ†ΠΈΡ„ΠΈΠΊΠΈ ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π»ΠΈ влияниС Π³Π»ΡƒΠ±ΠΈΠ½Π½Ρ‹Π΅ атлантичСскиС Π²ΠΎΠ΄Ρ‹, ΠΏΠΎΡΡ‚ΡƒΠΏΠ°ΡŽΡ‰ΠΈΠ΅ Ρ‡Π΅Ρ€Π΅Π· Панамский ΠΏΡ€ΠΎΠ»ΠΈΠ². ΠŸΡ€Π΅ΠΊΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ ΠΈΡ… поставки Π² Π’ΠΈΡ…ΠΈΠΉ ΠΎΠΊΠ΅Π°Π½ ΠΏΡ€ΠΎΠΈΠ·ΠΎΡˆΠ»ΠΎ, вСроятно, ΠΏΡΡ‚ΡŒ ΠΌΠ»Π½ Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄.The relevance of the study is caused by the need to get knowledge of the fundamental scientific problem - the ferromanganese precipitation of the World Ocean. Marine ferromanganese deposits are records of sedimentation conditions in the past as well as promising mineral raw materials. Their formation is carried out under various processes, which are reflected in the bulk and isotopic composition of ferromanganese deposits. Currently, the least studied region of the Pacific Ocean is its northern segment. The main aim of the research is to study Sr and Nd isotopic composition of the ferromanganese crusts from the Norther Pacific, formed under low detrital influx. Methods: litho-morphology; x-ray diffraction - determination of the mineral composition; mass spectrometric - determination of the chemical and isotopic composition. Results. Ferromanganese deposits of the guyots of the northern part of the Imperial Range (Detroit, Suzei, Hanzei) and the Amliya, Rat and Stailmate fracture zones, as well as the Vulkanolog Guyot (Magellan Seamounts), as a comparative material, were studied. Based on the mineralogical and geochemical bulk compositions, the studied ferromanganese deposits are classified as hydrogenetic ferromanganese crusts. The strontium isotopic composition of the studied samples is in the range from 0,70797 to 0,70919 (average 0,70885), with most of the samples concentrated at 0,709. At the same time, the content of strontium changes almost three times from 660 to 1700 ppm. The dependence of the isotopic composition on the concentration is not observed. The displacement of 87Sr/86Sr occurs towards volcanic rocks, which reflects the high amount of quartz-plagioclase admixture in the sample. The isotopic composition of neodymium, in terms of Ξ΅Nd, varies in the range from -3,5 to -3,0, which corresponds to the modern deep seawater of the North Pacific. An increase in Ξ΅Nd to -2,3 corresponds to a sample with the maximum terrigenous admixture. The minimum value of Ξ΅Nd (-4,4) was found in the bottom layer of the ferromanganese crust from the Hanzei Guyot. This value corresponds to the Miocene North Pacific Deep water. This is a reason to believe that in the Miocene the formation of the bulk composition of the North Pacific ferromanganese crusts was under North Atlantic Deep Waters entering through the Panama Gateway. The end of North Atlantic Deep Waters delivery to the Pacific was finished about five million years ago

    Extraction-atomic-absorption determination of gold in marine ferromanganese formations after its concentration with dibutyl sulphide in toluene

    No full text
    ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ исслСдования обусловлСна Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ Π½Π°Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ мСтодичСских Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΠΏΠΎ количСствСнному ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ содСрТания Π·ΠΎΠ»ΠΎΡ‚Π° Π² ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Ρ… образованиях ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… гСологичСских ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°Ρ… Π² связи с ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌΠΈ здСсь Ρ…ΠΈΠΌΠΈΠΊΠΎ-аналитичСскими трудностями ΠΈ нСдостаточным количСством стандартных ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² состава ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ с Π½Π°Π΄Π΅ΠΆΠ½ΠΎ аттСстованным содСрТаниСм Π² Π½ΠΈΡ… Π·ΠΎΠ»ΠΎΡ‚Π°. ЦСль: ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° примСнимости ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ экстракции Π·ΠΎΠ»ΠΎΡ‚Π° с использованиСм Π½Π΅Ρ„Ρ‚Π΅ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΎΠ² (Π΄ΠΈΠ±ΡƒΡ‚ΠΈΠ»ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄Π° Π² Ρ‚ΠΎΠ»ΡƒΠΎΠ»Π΅) ΠΊ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ Π·ΠΎΠ»ΠΎΡ‚Π° Π² ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Ρ… образованиях с элСктротСрмичСским Π°Ρ‚ΠΎΠΌΠ½ΠΎ-абсорбционным ΠΎΠΊΠΎΠ½Ρ‡Π°Π½ΠΈΠ΅ΠΌ, наряду с ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΎΠΉ извлСчСния Π·ΠΎΠ»ΠΎΡ‚Π° Π΅Π³ΠΎ соосаТдСниСм с Ρ‚Π΅Π»Π»ΡƒΡ€ΠΎΠΌ. ΠžΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹: ΠΏΡ€ΠΎΠ±Ρ‹ ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΈΠ· Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ€Π°ΠΉΠΎΠ½ΠΎΠ² сСвСрной части Π’ΠΈΡ…ΠΎΠ³ΠΎ ΠΎΠΊΠ΅Π°Π½Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ российский стандартный ΠΎΠ±Ρ€Π°Π·Π΅Ρ† состава с аттСстованным содСрТаниСм Π·ΠΎΠ»ΠΎΡ‚Π° ΠžΠžΠŸΠ• 603 (Π‘Π”Πž-6) ΠΈ стандарт ГСологичСской слуТбы БША NOD-A-1. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π·ΠΎΠ»ΠΎΡ‚Π° ΠΏΡ€ΠΈ Π΅Π³ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π² ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Ρ… образованиях ΠΏΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ°ΠΌ экстракции Π΄ΠΈΠ±ΡƒΡ‚ΠΈΠ»ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΎΠΌ Π² Ρ‚ΠΎΠ»ΡƒΠΎΠ»Π΅ ΠΈ соосаТдСниСм с Ρ‚Π΅Π»Π»ΡƒΡ€ΠΎΠΌ ΠΈ элСктротСрмичСским Π°Ρ‚ΠΎΠΌΠ½ΠΎ-абсорбционным Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ. ΠžΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² матСматичСской статистики. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° экстракции Π·ΠΎΠ»ΠΎΡ‚Π° с Π΄ΠΈΠ±ΡƒΡ‚ΠΈΠ»ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΎΠΌ Π² Ρ‚ΠΎΠ»ΡƒΠΎΠ»Π΅ ΠΏΠΎΠΊΠ°Π·Π°Π»Π° своС прСимущСство для Ρ†Π΅Π»Π΅ΠΉ Π°Π½Π°Π»ΠΈΠ·Π° ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ, ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€ΠΎΠΉ соосаТдСния с Ρ‚Π΅Π»Π»ΡƒΡ€ΠΎΠΌ, Π² связи с Π΅Π΅ высокой ΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π΅ΠΉ ΠΈΠ·Π±Π°Π²Π»ΡΡ‚ΡŒΡΡ ΠΎΡ‚ влияния ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ², Π² ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ ΠΆΠ΅Π»Π΅Π·Π°, Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΌΠ΅ΡˆΠ°ΡŽΡ‰Π΅Π΅ Π½Π°Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ ΠΏΡ€ΠΈ Π°Ρ‚ΠΎΠΌΠ½ΠΎ-абсорбционном ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π·ΠΎΠ»ΠΎΡ‚Π°. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° экстракции Π·ΠΎΠ»ΠΎΡ‚Π° с Π΄ΠΈΠ±ΡƒΡ‚ΠΈΠ»ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΎΠΌ Π±Ρ‹Π»Π° Π°ΠΏΡ€ΠΎΠ±ΠΈΡ€ΠΎΠ²Π°Π½Π° для Π°Π½Π°Π»ΠΈΠ·Π° ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΈΠ· Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ€Π°ΠΉΠΎΠ½ΠΎΠ² сСвСрной части Π’ΠΈΡ…ΠΎΠ³ΠΎ ΠΎΠΊΠ΅Π°Π½Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ стандартных ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² состава ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ - российском ΠžΠžΠŸΠ• 603 (Π‘Π”Πž-6) ΠΈ амСриканском стандартС NOD-A-1. ИспользованиС Π²ΠΎΠ·Π΄ΡƒΡˆΠ½ΠΎΡΡƒΡ…ΠΎΠΉ навСски 2 Π³ ΠΎΠ±Ρ€Π°Π·Ρ†Π° Π΄Π°Π»ΠΎ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ ΠΏΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ стандартного ΠΎΠ±Ρ€Π°Π·Ρ†Π° Π‘Π”Πž-6 с аттСстованным содСрТаниСм Π·ΠΎΠ»ΠΎΡ‚Π° 10Β±6 Π½Π³/Π³, Π½ΠΎ Π½Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎ ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΠ±Ρ€Π°Π·Π΅Ρ† NOD-A-1, для ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ нСвоспроизводимыС Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π’ этой связи для опрСдСлСния Π² Π΄Π°Π½Π½ΠΎΠΌ стандартС Π·ΠΎΠ»ΠΎΡ‚Π° рСкомСндуСтся использованиС Π΅Ρ‰Π΅ Π±ΠΎΠ»ΡŒΡˆΠΈΡ… навСсок. Атомно-абсорбционноС ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π·ΠΎΠ»ΠΎΡ‚Π° Π² ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ… ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΠΎ ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹, ΠΎΡ‚Π²Π΅Ρ‡Π°ΡŽΡ‰ΠΈΠ΅ трСбованиям гСохимичСского Π°Π½Π°Π»ΠΈΠ·Π°, Π² Ρ‚ΠΎΠΌ числС ΠΈ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ИБП-МБ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ. Однако ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ Ρ€Π°Π½Π΅Π΅ элСктронно-микроскопичСскоС исслСдованиС ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Ρ… ΠΊΠΎΡ€ΠΎΠΊ сСвСро-Π·Π°ΠΏΠ°Π΄Π½ΠΎΠΉ части Π’ΠΈΡ…ΠΎΠ³ΠΎ ΠΎΠΊΠ΅Π°Π½Π° выявило присутствиС Π² Π½ΠΈΡ… частиц самородного Π·ΠΎΠ»ΠΎΡ‚Π°, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚, Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, Π²Ρ‹Π·Ρ‹Π²Π°Ρ‚ΡŒ мСтодичСскиС слоТности Π² процСссС ΠΎΡ‚Π±ΠΎΡ€Π° ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠ±Ρ‹ ΠΈ Π² ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π΅ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΊ Π°Π½Π°Π»ΠΈΠ·Ρƒ.The relevance of the study is caused by the need to develop methodological solutions for the quantitative determination of gold content in ferromanganese formations and other geological objects due to the chemical and analytical difficulties that exist here and the insufficient number of certified reference materials of ferromanganese formations with a reliably certified gold content in them. The main aim is verification of the applicability of the gold extraction technique using petroleum sulfides (dibutyl sulfide in toluene) f or determining gold in ferromanganese formations with electrothermal atomic absorption termination, along with the gold extraction method by its co-precipitation with tellurium. Objects: samples of ferromanganese formations from various regions of the North Pacific Ocean, as well as the Russian certified reference materials with a certified gold content OOPE 603 (SDO-6) and the USGS standard NOD-A-1. Methods. Gold was concentrated during its determination in ferromanganese formations by the methods of extraction with dibutyl sulfide in toluene and co-precipitation with tellurium and electrothermal atomic absorption analysis. Processing of the obtained results was carried out using the methods of mathematical statistics. Results. The method of gold extraction with dibutyl sulfide in toluene has shown its advantage for the purposes of analysis of ferroma nganese formations in comparison with the procedure of co-precipitation with tellurium, due to its high selectivity, which makes it possible to get rid of the influence of matrix components, primarily iron, which forms an interfering superposition of spectral lines during atomic absorption determination of gold. The technique of gold extraction with dibutyl sulfide was tested for the analysis of ferromanganese formations samples from various regions of the North Pacific Ocean, as well as for the analysis of ferromanganese formations samples - the Russian OOPE 603 (SDO-6) and the American standard NOD-A-1. The use of an air-dry sample of 2 g of the sample gave a satisfactory result in the analysis of the standard sample SDO-6, with a certified gold content of 10Β±6 ng/g, but did not allow successful analysis of the NOD-A-1 sample, for which irreproducible results were obtained. In this regard, the use of even larger weights is recommended for defining gold in this standard. Atomic absorption determination of gold in the studied ferromanganese formations samples using the proposed method gave results that meet the requirements of geochemical analysis, including in comparison with the ICP-MS method. However, an earlier electron microscopic study of ferromanganese crusts in the northwestern part of the Pacific Ocean showed the presence of native gold particles in them, which, in its turn, can cause methodological difficulties in the process of taking a representative sample and d the procedure for preparing ferromanganese formations samples for analysis

    Production patterns in the estuary of the Razdolnaya River in period of freezing

    No full text
    Light conditions and nutrients supply, as factors of primary production, are considered for the Razdolnaya River estuary in period of freezing (January-March). Water samples were collected at the water surface and at the bottom for measuring of salinity and concentrations of chlorophyll (Chl), phosphate, nitrite, nitrate, ammonium, and silicate. Profiles of water temperature, conductivity, Chl fluorescence, and turbidity were measured in situ by CTD-probe RBR XR-620; besides, vertical attenuation of PAR was measured at each station. The internal estuary (salinity 5 FTU) and high concentration of humine substances (up to 2 mgC/l) in the river waters. The ice cover lowered light intensity in the river water, too. In the zone close to the river bar with salinity 1-25 ‰, Chl concentration was 0.4-1.7 mg/m3 irrespective of salinity. DIN (dissolved inorganic nitrogen) and DISi (dissolved inorganic silicon) had conservative behaviour in this zone, the DISi : DIN ratio was β‰ˆ 0.7-1.1.These features indicate an absence of significant production or destruction of organic matter in the internal estuary. However, intensive removal of dissolved inorganic phosphorus (DIP) (up to 80 %) was observed in this zone, that’s why the extraordinary high DIN : DIP ratio was observed under salinity 5-20 ‰ (up to 200 : 1, though the usual DIN : DIP ratio in the river water is close to Redfild ratio: DIN : DIP = (21-27) : 1). In the external estuary (salinity15-32 ‰), the water became more transparent ( kd = 0.5-0.3 m-1; zeu β‰ˆ 9-15 m) and both chlorophyll concentration and dissolved oxygen content became higher (Chl up to 20 mg/m3, DO up to 500 mM/kg) as the result of high primary production, whereas nutrients concentrations became lower: DIP were completely removed and DIN and DISi retained 10-25 % of their initial values in the river water. The primary production value was evaluated by two ways: on the data of light intensity and on the data of nutrients removal. The light conditions in the internal estuary in February-March corresponded to the value 20-80 mgC/m2d which declines in 6-13 times and 50-100 times (close to zero) under the ice and under the ice with snow, respectively. In the external estuary, the light conditions in March corresponded to the value 300-600 mgC/m2d in the areas without ice and to the value lower in 6-13 times under the ice. The nutrients removal corresponded to the primary production value β‰ˆ 200-400 mgC/m2d in the external estuary, irrespective of ice cover, that is close to the previous estimation by light conditions. So, the primary production in the Razdolnaya River estuary changes in winter in the range from 0 to 500 mgC/m2d, increasing seaward, the ice and snow are the factors of its limitation by light
    corecore