11 research outputs found
INVESTIGATION OF THE INFLUENCE OF THE PROCESS OF FREEZING ON MICROBIOLOGICAL FACTORS OF SAFETY OF FROZEN SEMI-PRODUCT FOR COOKING DRINK SMOOTHIE
A semi-product for cooking a smoothie drink was chosen as a subject of the study. It included strawberries, dried apples and oat flocks. A sample was frozen in a low-temperature calorimeter to β20 Β°Π‘. It was established, that freezing atβ20Β±2 Β°Π‘ favors the full conservation of a sample and storage during 270 days. The results of the organoleptic evaluation of the semi-product before freezing and after refrigeratory storage during 270 demonstrated that the product is characterized by a high quality.
Microbiological parameters of the fresh and frozen semi-product were studied for a quantity of mesophilic aerobic and facultative-anaerobic microorganisms (QMAFMAnM). And also for bacteria of the colibacillus group (BGCB), pathogenic microorganisms of bacteria of Salmonella genus, molds and yeast. The gram-negative microflora β bacteria of the colibacillus group, pathogenic microorganisms including bacteria of Salmonella genus, were not observed in samples of frozen semi-products.
The studies demonstrated freezing advantages from both aspects of minimization of losses of valuable biocomponents of the raw material and of achieving high organoleptic parameters of products after freezing and defrosting. The observance of optimal conditions of freezing excludes the necessity of the additional use of artificial preservatives, provides high-quality products and safety that corresponds to all principles of healthy nutrition
nNOS regulates ciliated cell polarity, ciliary beat frequency, and directional flow in mouse trachea.
Clearance of the airway is dependent on directional mucus flow across the mucociliary epithelium, and deficient flow is implicated in a range of human disorders. Efficient flow relies on proper polarization of the multiciliated cells and sufficient ciliary beat frequency. We show that NO, produced by nNOS in the multiciliated cells of the mouse trachea, controls both the planar polarity and the ciliary beat frequency and is thereby necessary for the generation of the robust flow. The effect of nNOS on the polarity of ciliated cells relies on its interactions with the apical networks of actin and microtubules and involves RhoA activation. The action of nNOS on the beat frequency is mediated by guanylate cyclase; both NO donors and cGMP can augment fluid flow in the trachea and rescue the deficient flow in nNOS mutants. Our results link insufficient availability of NO in ciliated cells to defects in flow and ciliary activity and may thereby explain the low levels of exhaled NO in ciliopathies
Seasonal hydrological and hydrochemical surveys in the Voevoda Bay (Amur Bay, Japan Sea)
Hydrological and hydrochemical surveys were conducted in the Voevoda Bay in May, August, and October, 2011 and February, 2012, in total 140 stations. Free water exchange of the bay with the Amur Bay is observed, with exception of its inner bights Kruglaya and Melkovodnaya. The water exchange is maintained by anticyclonic circulation with the inflow along the southern coast and outflow along the northern coast of the Voyevoda Bay. However, the opposite cyclonic circulation is observed in the Melkovodanaya Bight because of its coastal line patterns and fresh water discharge by the river. Dissolved oxygen content and partial pressure of CO2 in the bay waters are determined mostly by intensive processes of production and destruction of organic matter. There are three main groups of primary producers there, as diatom algae, sea grass Zostera marina , and periphyton. Specific chemical regime is formed in the Melkovodnaya Bight, in particular in winter when primary production depends on the ice cover and is driven by variations of photosynthetically active radiation passed through the ice. Seasonal variability of production-destruction processes intensity is discussed on the data of chemical parameters changes
ΠΡΡΠΎΡΠΊΠΎΠΏΡΡΠ½Ρ ΡΠ° ΠΌΡΠΊΡΠΎΠ±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½Ρ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ Π½Π°ΠΏΡΠ²ΡΠ°Π±ΡΠΈΠΊΠ°ΡΡ Π΄Π»Ρ ΠΏΡΠΈΠ³ΠΎΡΡΠ²Π°Π½Π½Ρ Π½Π°ΠΏΠΎΡ ΡΠΌΡΠ·Ρ
The dynamics of freezing a semi-finished product for making a smoothie drink was investigated. We have chosen, as the subject of present study, a semi-finished product whose production technology included strawberry, dried apple, and oat flakes.By using a low temperature calorimeter, crystallization ranges for the examined semi-finished product, as well as the amount of frozen moisture, which was 68.6 %, were identified. It is established that freezing at β20Β±2 Β°C contributes to the complete preservation of the sample, and its further storing at the temperature within such limits ensures its storage over a long period of time. It was also experimentally established that the curves of freezing and defrosting of the sample do not coincide, that is, the character of temperature dependence during freezing and defrosting is different. This testifies to the irreversibility of plant tissue during ice formation and thawing.A reduction in the total microbial contamination over a long refrigeration storing is established, which indicates a negative effect of cold on the viability of microorganisms. The amount of mesophilic-aerobic and optionally anaerobic microorganisms in 30, 60, 90, 180, and 270 days of refrigeration at β18Β±2 Β°C is significantly reduced compared to freshly prepared. The amount of yeast and mild fungi also decreases during storage. It is important to comply with sanitary and hygienic standards during production, packaging, storing, and selling, since the complete extinction of the microflora does not occur.The development and active introduction of effective freezing technologies, low temperature storage, and processing of fruits and berries would contribute to solving a task on the balanced nutrition of people, reducing the level of diseases, improving quality of life. In addition, the introduction of such technologies would significantly enlarge the base of local processing industry whose development, in turn, would contribute to the development of agricultural production in a given region.The data obtained data could be applied to determine the rational freezing and defrosting modes for a semi-finished product and would make it possible to extend the assortment of frozen products.ΠΠ·ΡΡΠ΅Π½Π° Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° Π·Π°ΠΌΠΎΡΠ°ΠΆΠΈΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ»ΡΡΠ°Π±ΡΠΈΠΊΠ°ΡΠ° Π΄Π»Ρ ΠΏΡΠΈΠ³ΠΎΡΠΎΠ²Π»Π΅Π½ΠΈΡ Π½Π°ΠΏΠΈΡΠΊΠ° ΡΠΌΡΠ·ΠΈ. Π‘ ΠΏΠΎΠΌΠΎΡΡΡ Π½ΠΈΠ·ΠΊΠΎΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠ³ΠΎ ΠΊΠ°Π»ΠΎΡΠΈΠΌΠ΅ΡΡΠ° ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Ρ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Ρ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΈ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ Π²ΡΠΌΠΎΡΠΎΠΆΠ΅Π½Π½ΠΎΠΉ Π²Π»Π°Π³ΠΈ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΠΎΠ³ΠΎ ΠΏΠΎΠ»ΡΡΠ°Π±ΡΠΈΠΊΠ°ΡΠ°. ΠΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΌΠΈΠΊΡΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ, Π²ΡΡΠ²Π»Π΅Π½ΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΌΠΈΠΊΡΠΎΡΠ»ΠΎΡΡ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ Π½ΠΈΠ·ΠΊΠΎΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠ³ΠΎ Ρ
ΡΠ°Π½Π΅Π½ΠΈΡ. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ
ΡΠ΅ΠΆΠΈΠΌΠΎΠ² Π·Π°ΠΌΠΎΡΠ°ΠΆΠΈΠ²Π°Π½ΠΈΡ ΠΈ ΡΠ°Π·ΠΌΠΎΡΠ°ΠΆΠΈΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ»ΡΡΠ°Π±ΡΠΈΠΊΠ°ΡΠ° ΠΈ Π΄Π°Π΄ΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΠ°ΡΡΠΈΡΠΈΡΡ Π°ΡΡΠΎΡΡΠΈΠΌΠ΅Π½Ρ Π·Π°ΠΌΠΎΡΠΎΠΆΠ΅Π½Π½ΠΎΠΉ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠΈΠΠΈΠ²ΡΠ΅Π½ΠΎ Π΄ΠΈΠ½Π°ΠΌΡΠΊΡ Π·Π°ΠΌΠΎΡΠΎΠΆΡΠ²Π°Π½Π½Ρ Π½Π°ΠΏΡΠ²ΡΠ°Π±ΡΠΈΠΊΠ°ΡΡ Π΄Π»Ρ ΠΏΡΠΈΠ³ΠΎΡΡΠ²Π°Π½Π½Ρ Π½Π°ΠΏΠΎΡ ΡΠΌΡΠ·Ρ. ΠΠ° Π΄ΠΎΠΏΠΎΠΌΠΎΠ³ΠΎΡ Π½ΠΈΠ·ΡΠΊΠΎΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠ³ΠΎ ΠΊΠ°Π»ΠΎΡΠΈΠΌΠ΅ΡΡΡ Π²ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Ρ Π΄ΡΠ°ΠΏΠ°Π·ΠΎΠ½ΠΈ ΠΊΡΠΈΡΡΠ°Π»ΡΠ·Π°ΡΡΡ ΡΠ° ΠΊΡΠ»ΡΠΊΡΡΡΡ Π²ΠΈΠΌΠΎΡΠΎΠΆΠ΅Π½ΠΎΡ Π²ΠΎΠ»ΠΎΠ³ΠΈ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΡΠ²Π°Π½ΠΎΠ³ΠΎ Π½Π°ΠΏΡΠ²ΡΠ°Π±ΡΠΈΠΊΠ°ΡΡ. ΠΠ°Π²Π΅Π΄Π΅Π½ΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΈ ΠΌΡΠΊΡΠΎΠ±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΈΡ
Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Ρ, Π²ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ ΠΊΡΠ»ΡΠΊΡΡΠ½Ρ Π·ΠΌΡΠ½Ρ ΠΌΡΠΊΡΠΎΡΠ»ΠΎΡΠΈ Ρ ΠΏΡΠΎΡΠ΅ΡΡ Π½ΠΈΠ·ΡΠΊΠΎΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠ³ΠΎ Π·Π±Π΅ΡΡΠ³Π°Π½Π½Ρ. ΠΡΡΠΈΠΌΠ°Π½Ρ Π΄Π°Π½Ρ ΠΌΠΎΠΆΡΡΡ Π±ΡΡΠΈ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Ρ Π΄Π»Ρ Π²ΠΈΠ·Π½Π°ΡΠ΅Π½Π½Ρ ΡΠ°ΡΡΠΎΠ½Π°Π»ΡΠ½ΠΈΡ
ΡΠ΅ΠΆΠΈΠΌΡΠ² Π·Π°ΠΌΠΎΡΠΎΠΆΡΠ²Π°Π½Π½Ρ ΡΠ° ΡΠΎΠ·ΠΌΠΎΡΠΎΠΆΡΠ²Π°Π½Π½Ρ Π½Π°ΠΏΡΠ²ΡΠ°Π±ΡΠΈΠΊΠ°ΡΡ Ρ Π΄Π°Π΄ΡΡΡ ΠΌΠΎΠΆΠ»ΠΈΠ²ΡΡΡΡ ΡΠΎΠ·ΡΠΈΡΠΈΡΠΈ Π°ΡΠΎΡΡΠΈΠΌΠ΅Π½Ρ Π·Π°ΠΌΠΎΡΠΎΠΆΠ΅Π½ΠΎΡ ΠΏΡΠΎΠ΄ΡΠΊΡΡ
Cryoscopic and microbiological study of the semiΒfinished product for making a smoothie drink
The dynamics of freezing a semi-finished product for making a smoothie drink was investigated. We have chosen, as the subject of present study, a semi-finished product whose production technology included strawberry, dried apple, and oat flakes.By using a low temperature calorimeter, crystallization ranges for the examined semi-finished product, as well as the amount of frozen moisture, which was 68.6 %, were identified. It is established that freezing at β20Β±2 Β°C contributes to the complete preservation of the sample, and its further storing at the temperature within such limits ensures its storage over a long period of time. It was also experimentally established that the curves of freezing and defrosting of the sample do not coincide, that is, the character of temperature dependence during freezing and defrosting is different. This testifies to the irreversibility of plant tissue during ice formation and thawing.A reduction in the total microbial contamination over a long refrigeration storing is established, which indicates a negative effect of cold on the viability of microorganisms. The amount of mesophilic-aerobic and optionally anaerobic microorganisms in 30, 60, 90, 180, and 270 days of refrigeration at β18Β±2 Β°C is significantly reduced compared to freshly prepared. The amount of yeast and mild fungi also decreases during storage. It is important to comply with sanitary and hygienic standards during production, packaging, storing, and selling, since the complete extinction of the microflora does not occur.The development and active introduction of effective freezing technologies, low temperature storage, and processing of fruits and berries would contribute to solving a task on the balanced nutrition of people, reducing the level of diseases, improving quality of life. In addition, the introduction of such technologies would significantly enlarge the base of local processing industry whose development, in turn, would contribute to the development of agricultural production in a given region.The data obtained data could be applied to determine the rational freezing and defrosting modes for a semi-finished product and would make it possible to extend the assortment of frozen products.ΠΠ·ΡΡΠ΅Π½Π° Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° Π·Π°ΠΌΠΎΡΠ°ΠΆΠΈΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ»ΡΡΠ°Π±ΡΠΈΠΊΠ°ΡΠ° Π΄Π»Ρ ΠΏΡΠΈΠ³ΠΎΡΠΎΠ²Π»Π΅Π½ΠΈΡ Π½Π°ΠΏΠΈΡΠΊΠ° ΡΠΌΡΠ·ΠΈ. Π‘ ΠΏΠΎΠΌΠΎΡΡΡ Π½ΠΈΠ·ΠΊΠΎΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠ³ΠΎ ΠΊΠ°Π»ΠΎΡΠΈΠΌΠ΅ΡΡΠ° ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Ρ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Ρ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΈ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ Π²ΡΠΌΠΎΡΠΎΠΆΠ΅Π½Π½ΠΎΠΉ Π²Π»Π°Π³ΠΈ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΠΎΠ³ΠΎ ΠΏΠΎΠ»ΡΡΠ°Π±ΡΠΈΠΊΠ°ΡΠ°. ΠΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΌΠΈΠΊΡΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ, Π²ΡΡΠ²Π»Π΅Π½ΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΌΠΈΠΊΡΠΎΡΠ»ΠΎΡΡ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ Π½ΠΈΠ·ΠΊΠΎΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠ³ΠΎ Ρ
ΡΠ°Π½Π΅Π½ΠΈΡ. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ
ΡΠ΅ΠΆΠΈΠΌΠΎΠ² Π·Π°ΠΌΠΎΡΠ°ΠΆΠΈΠ²Π°Π½ΠΈΡ ΠΈ ΡΠ°Π·ΠΌΠΎΡΠ°ΠΆΠΈΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ»ΡΡΠ°Π±ΡΠΈΠΊΠ°ΡΠ° ΠΈ Π΄Π°Π΄ΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΠ°ΡΡΠΈΡΠΈΡΡ Π°ΡΡΠΎΡΡΠΈΠΌΠ΅Π½Ρ Π·Π°ΠΌΠΎΡΠΎΠΆΠ΅Π½Π½ΠΎΠΉ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠΈΠΠΈΠ²ΡΠ΅Π½ΠΎ Π΄ΠΈΠ½Π°ΠΌΡΠΊΡ Π·Π°ΠΌΠΎΡΠΎΠΆΡΠ²Π°Π½Π½Ρ Π½Π°ΠΏΡΠ²ΡΠ°Π±ΡΠΈΠΊΠ°ΡΡ Π΄Π»Ρ ΠΏΡΠΈΠ³ΠΎΡΡΠ²Π°Π½Π½Ρ Π½Π°ΠΏΠΎΡ ΡΠΌΡΠ·Ρ. ΠΠ° Π΄ΠΎΠΏΠΎΠΌΠΎΠ³ΠΎΡ Π½ΠΈΠ·ΡΠΊΠΎΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠ³ΠΎ ΠΊΠ°Π»ΠΎΡΠΈΠΌΠ΅ΡΡΡ Π²ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Ρ Π΄ΡΠ°ΠΏΠ°Π·ΠΎΠ½ΠΈ ΠΊΡΠΈΡΡΠ°Π»ΡΠ·Π°ΡΡΡ ΡΠ° ΠΊΡΠ»ΡΠΊΡΡΡΡ Π²ΠΈΠΌΠΎΡΠΎΠΆΠ΅Π½ΠΎΡ Π²ΠΎΠ»ΠΎΠ³ΠΈ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΡΠ²Π°Π½ΠΎΠ³ΠΎ Π½Π°ΠΏΡΠ²ΡΠ°Π±ΡΠΈΠΊΠ°ΡΡ. ΠΠ°Π²Π΅Π΄Π΅Π½ΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΈ ΠΌΡΠΊΡΠΎΠ±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΈΡ
Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Ρ, Π²ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ ΠΊΡΠ»ΡΠΊΡΡΠ½Ρ Π·ΠΌΡΠ½Ρ ΠΌΡΠΊΡΠΎΡΠ»ΠΎΡΠΈ Ρ ΠΏΡΠΎΡΠ΅ΡΡ Π½ΠΈΠ·ΡΠΊΠΎΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠ³ΠΎ Π·Π±Π΅ΡΡΠ³Π°Π½Π½Ρ. ΠΡΡΠΈΠΌΠ°Π½Ρ Π΄Π°Π½Ρ ΠΌΠΎΠΆΡΡΡ Π±ΡΡΠΈ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Ρ Π΄Π»Ρ Π²ΠΈΠ·Π½Π°ΡΠ΅Π½Π½Ρ ΡΠ°ΡΡΠΎΠ½Π°Π»ΡΠ½ΠΈΡ
ΡΠ΅ΠΆΠΈΠΌΡΠ² Π·Π°ΠΌΠΎΡΠΎΠΆΡΠ²Π°Π½Π½Ρ ΡΠ° ΡΠΎΠ·ΠΌΠΎΡΠΎΠΆΡΠ²Π°Π½Π½Ρ Π½Π°ΠΏΡΠ²ΡΠ°Π±ΡΠΈΠΊΠ°ΡΡ Ρ Π΄Π°Π΄ΡΡΡ ΠΌΠΎΠΆΠ»ΠΈΠ²ΡΡΡΡ ΡΠΎΠ·ΡΠΈΡΠΈΡΠΈ Π°ΡΠΎΡΡΠΈΠΌΠ΅Π½Ρ Π·Π°ΠΌΠΎΡΠΎΠΆΠ΅Π½ΠΎΡ ΠΏΡΠΎΠ΄ΡΠΊΡΡ
INVESTIGATION OF THE INFLUENCE OF THE PROCESS OF FREEZING ON MICROBIOLOGICAL FACTORS OF SAFETY OF FROZEN SEMI-PRODUCT FOR COOKING DRINK SMOOTHIE
A semi-product for cooking a smoothie drink was chosen as a subject of the study. It included strawberries, dried apples and oat flocks. A sample was frozen in a low-temperature calorimeter to β20 Β°Π‘. It was established, that freezing atβ20Β±2 Β°Π‘ favors the full conservation of a sample and storage during 270 days. The results of the organoleptic evaluation of the semi-product before freezing and after refrigeratory storage during 270 demonstrated that the product is characterized by a high quality.Microbiological parameters of the fresh and frozen semi-product were studied for a quantity of mesophilic aerobic and facultative-anaerobic microorganisms (QMAFMAnM). And also for bacteria of the colibacillus group (BGCB), pathogenic microorganisms of bacteria of Salmonella genus, molds and yeast. The gram-negative microflora β bacteria of the colibacillus group, pathogenic microorganisms including bacteria of Salmonella genus, were not observed in samples of frozen semi-products.The studies demonstrated freezing advantages from both aspects of minimization of losses of valuable biocomponents of the raw material and of achieving high organoleptic parameters of products after freezing and defrosting. The observance of optimal conditions of freezing excludes the necessity of the additional use of artificial preservatives, provides high-quality products and safety that corresponds to all principles of healthy nutrition
Cryoscopic and Microbiological Study of the SemiΒfinished Product for Making a Smoothie Drink
The dynamics of freezing a semi-finished product for making a smoothie drink was investigated. We have chosen, as the subject of present study, a semi-finished product whose production technology included strawberry, dried apple, and oat flakes.By using a low temperature calorimeter, crystallization ranges for the examined semi-finished product, as well as the amount of frozen moisture, which was 68.6 %, were identified. It is established that freezing at β20Β±2 Β°C contributes to the complete preservation of the sample, and its further storing at the temperature within such limits ensures its storage over a long period of time. It was also experimentally established that the curves of freezing and defrosting of the sample do not coincide, that is, the character of temperature dependence during freezing and defrosting is different. This testifies to the irreversibility of plant tissue during ice formation and thawing.A reduction in the total microbial contamination over a long refrigeration storing is established, which indicates a negative effect of cold on the viability of microorganisms. The amount of mesophilic-aerobic and optionally anaerobic microorganisms in 30, 60, 90, 180, and 270 days of refrigeration at β18Β±2 Β°C is significantly reduced compared to freshly prepared. The amount of yeast and mild fungi also decreases during storage. It is important to comply with sanitary and hygienic standards during production, packaging, storing, and selling, since the complete extinction of the microflora does not occur.The development and active introduction of effective freezing technologies, low temperature storage, and processing of fruits and berries would contribute to solving a task on the balanced nutrition of people, reducing the level of diseases, improving quality of life. In addition, the introduction of such technologies would significantly enlarge the base of local processing industry whose development, in turn, would contribute to the development of agricultural production in a given region.The data obtained data could be applied to determine the rational freezing and defrosting modes for a semi-finished product and would make it possible to extend the assortment of frozen products
Sr and Nd isotopes in hydrogenetic ferromanganese crusts from the North Pacific
ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π° Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΡΡ ΠΏΠΎΠ·Π½Π°Π½ΠΈΡ ΡΡΠ½Π΄Π°ΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠΉ Π½Π°ΡΡΠ½ΠΎΠΉ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ - ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°ΡΠ³Π°Π½ΡΠ΅Π²ΡΠΉ ΡΡΠ΄ΠΎΠ³Π΅Π½Π΅Π· ΠΠΈΡΠΎΠ²ΠΎΠ³ΠΎ ΠΎΠΊΠ΅Π°Π½Π°. ΠΠΎΠΌΠΈΠΌΠΎ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΈΠ½Π΅ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΡΡΡ, ΠΌΠΎΡΡΠΊΠΈΠ΅ ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°ΡΠ³Π°Π½ΡΠ΅Π²ΡΠ΅ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²Π»ΡΡΡΡΡ ΡΠ΅Π³ΠΈΡΡΡΠ°ΡΠΎΡΠ°ΠΌΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΉ ΡΠ΅Π΄ΠΈΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ Π² ΠΏΡΠΎΡΠ»ΠΎΠΌ. ΠΡ
ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΏΡΠΎΡΠ΅ΡΡΠ°Ρ
, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΎΡΡΠ°ΠΆΠ΅Π½Ρ Π² Π²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΌ ΠΈ ΠΈΠ·ΠΎΡΠΎΠΏΠ½ΠΎΠΌ ΡΠΎΡΡΠ°Π²Π΅. Π Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ Π½Π°ΠΈΠΌΠ΅Π½Π΅Π΅ ΠΈΠ·ΡΡΠ΅Π½Π½ΡΠΌ ΡΠ΅Π³ΠΈΠΎΠ½ΠΎΠΌ Π’ΠΈΡ
ΠΎΠ³ΠΎ ΠΎΠΊΠ΅Π°Π½Π° ΡΠ²Π»ΡΠ΅ΡΡΡ Π΅Π³ΠΎ ΡΠ΅Π²Π΅ΡΠ½ΡΠΉ ΡΠ΅Π³ΠΌΠ΅Π½Ρ. Π¦Π΅Π»Ρ: ΠΈΠ·ΡΡΠΈΡΡ ΠΈΠ·ΠΎΡΠΎΠΏΠ½ΡΠΉ ΡΠΎΡΡΠ°Π² Sr ΠΈ Nd ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°ΡΠ³Π°Π½ΡΠ΅Π²ΡΡ
ΠΊΠΎΡΠΎΠΊ ΡΠ΅Π²Π΅ΡΠ½ΠΎΠΉ ΠΠ°ΡΠΈΡΠΈΠΊΠΈ, ΡΠΎΡΠΌΠΈΡΡΡΡΠΈΡ
ΡΡ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
Π½ΠΈΠ·ΠΊΠΎΠ³ΠΎ ΡΠ΅ΡΡΠΈΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡΠΎΠΊΠ°. ΠΠ΅ΡΠΎΠ΄Ρ: Π»ΠΈΡΠΎΠ»ΠΎΠ³ΠΎ-ΠΌΠΎΡΡΠΎΠ³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ; ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΡΡΡΡΠΊΡΡΡΠ½ΡΠΉ - ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΌΠΈΠ½Π΅ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π°; ΠΌΠ°ΡΡ- ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ - ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈ ΠΈΠ·ΠΎΡΠΎΠΏΠ½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π°. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°ΡΠ³Π°Π½ΡΠ΅Π²ΡΠ΅ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π³Π°ΠΉΠΎΡΠΎΠ² ΡΠ΅Π²Π΅ΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΈ ΠΠΌΠΏΠ΅ΡΠ°ΡΠΎΡΡΠΊΠΎΠ³ΠΎ Ρ
ΡΠ΅Π±ΡΠ° (ΠΠ΅ΡΡΠΎΠΉΡ, Π‘ΡΡΠ·Π΅ΠΉ, Π₯Π°Π½Π·Π΅ΠΉ) ΠΈ ΡΠ°Π·Π»ΠΎΠΌΠ½ΡΡ
Π·ΠΎΠ½ ΠΠΌΠ»ΠΈΡ, Π Π°Ρ ΠΈ Π‘ΡΠ΅ΠΉΠ»ΠΌΠ΅ΠΉΡ, Π° ΡΠ°ΠΊΠΆΠ΅ Π³Π°ΠΉΠΎΡΠ° ΠΡΠ»ΠΊΠ°Π½ΠΎΠ»ΠΎΠ³ (ΠΠ°Π³Π΅Π»Π»Π°Π½ΠΎΠ²Ρ Π³ΠΎΡΡ) Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°. ΠΠ° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ΅ΠΊΡΡΡΡΠ½ΠΎ-ΡΡΡΡΠΊΡΡΡΠ½ΡΡ
ΠΈ ΠΌΠΈΠ½Π΅ΡΠ°Π»ΠΎΠ³ΠΎ-Π³Π΅ΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ ΠΈΠ·ΡΡΠ΅Π½Π½ΡΠ΅ ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°ΡΠ³Π°Π½ΡΠ΅Π²ΡΠ΅ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΎΡΠ½Π΅ΡΠ΅Π½Ρ ΠΊ Π³ΠΈΠ΄ΡΠΎΠ³Π΅Π½Π½ΡΠΌ ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°ΡΠ³Π°Π½ΡΠ΅Π²ΡΠΌ ΠΊΠΎΡΠΊΠ°ΠΌ. ΠΠ·ΠΎΡΠΎΠΏΠ½ΡΠΉ ΡΠΎΡΡΠ°Π² ΡΡΡΠΎΠ½ΡΠΈΡ ΠΈΠ·ΡΡΠ΅Π½Π½ΡΡ
ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π² ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ ΠΎΡ 0,70797 Π΄ΠΎ 0,70919 (ΡΡΠ΅Π΄Π½Π΅Π΅ 0,70885). ΠΡΠΈ ΡΡΠΎΠΌ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΡΡΡΠΎΠ½ΡΠΈΡ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΏΠΎΡΡΠΈ Π² ΡΡΠΈ ΡΠ°Π·Π° - ΠΎΡ 660 Π΄ΠΎ 1700 Π³/Ρ. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΈΠ·ΠΎΡΠΎΠΏΠ½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π° ΠΎΡ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ Sr Π½Π΅ ΠΎΡΠΌΠ΅ΡΠ°Π΅ΡΡΡ. Π‘ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ 87Sr/86Sr ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΠΈΡ ΠΊ Π΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌ, Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΡΠΌ Π΄Π»Ρ Π²ΡΠ»ΠΊΠ°Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠΎΡΠΎΠ΄, ΡΡΠΎ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΡΠΎΠΊΠΎΠ³ΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° ΠΊΠ²Π°ΡΡ-ΠΏΠ»Π°Π³ΠΈΠΎΠΊΠ»Π°Π·ΠΎΠ²ΠΎΠΉ ΠΏΡΠΈΠΌΠ΅ΡΠΈ Π² ΠΎΠ±ΡΠ°Π·ΡΠ΅. ΠΠ·ΠΎΡΠΎΠΏΠ½ΡΠΉ ΡΠΎΡΡΠ°Π² Π½Π΅ΠΎΠ΄ΠΈΠΌΠ° Π² ΠΏΠ΅ΡΠ΅ΡΡΠ΅ΡΠ΅ Π½Π° Ξ΅Nd Π²Π°ΡΡΠΈΡΡΠ΅Ρ Π² ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ ΠΎΡ -3,5 Π΄ΠΎ -3,0, ΡΡΠΎ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π³Π»ΡΠ±ΠΈΠ½Π½ΠΎΠΉ Π²ΠΎΠ΄Ρ ΡΠ΅Π²Π΅ΡΠ½ΠΎΠΉ ΠΠ°ΡΠΈΡΠΈΠΊΠΈ. ΠΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Ξ΅Nd Π΄ΠΎ -2,3 ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΠΏΡΠΎΠ±Π΅ Ρ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ Π°Π»Π»ΠΎΡΠΈΠ³Π΅Π½Π½ΠΎΠΉ ΠΏΡΠΈΠΌΠ΅ΡΡΡ. ΠΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Ξ΅Nd (-4,4) ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ Π² ΠΏΠΎΠ΄ΠΎΡΠ²Π΅Π½Π½ΠΎΠΌ ΡΠ»ΠΎΠ΅ ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°ΡΠ³Π°Π½ΡΠ΅Π²ΠΎΠΉ ΠΊΠΎΡΠΊΠΈ Π³Π°ΠΉΠΎΡΠ° Π₯Π°Π½Π·Π΅ΠΉ. Π’Π°ΠΊΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΠΌΠΈΠΎΡΠ΅Π½ΠΎΠ²ΠΎΠΉ Π³Π»ΡΠ±ΠΈΠ½Π½ΠΎΠΉ Π²ΠΎΠ΄Π΅ ΡΠ΅Π²Π΅ΡΠ½ΠΎΠΉ ΠΠ°ΡΠΈΡΠΈΠΊΠΈ. ΠΡΠΎ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΠΎΠ»Π°Π³Π°ΡΡ, ΡΡΠΎ Π² ΠΌΠΈΠΎΡΠ΅Π½Π΅ Π½Π° ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π° ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°ΡΠ³Π°Π½ΡΠ΅Π²ΡΡ
ΠΊΠΎΡΠΎΠΊ ΡΠ΅Π²Π΅ΡΠ½ΠΎΠΉ ΠΠ°ΡΠΈΡΠΈΠΊΠΈ ΠΎΠΊΠ°Π·ΡΠ²Π°Π»ΠΈ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π³Π»ΡΠ±ΠΈΠ½Π½ΡΠ΅ Π°ΡΠ»Π°Π½ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π²ΠΎΠ΄Ρ, ΠΏΠΎΡΡΡΠΏΠ°ΡΡΠΈΠ΅ ΡΠ΅ΡΠ΅Π· ΠΠ°Π½Π°ΠΌΡΠΊΠΈΠΉ ΠΏΡΠΎΠ»ΠΈΠ². ΠΡΠ΅ΠΊΡΠ°ΡΠ΅Π½ΠΈΠ΅ ΠΈΡ
ΠΏΠΎΡΡΠ°Π²ΠΊΠΈ Π² Π’ΠΈΡ
ΠΈΠΉ ΠΎΠΊΠ΅Π°Π½ ΠΏΡΠΎΠΈΠ·ΠΎΡΠ»ΠΎ, Π²Π΅ΡΠΎΡΡΠ½ΠΎ, ΠΏΡΡΡ ΠΌΠ»Π½ Π»Π΅Ρ Π½Π°Π·Π°Π΄.The relevance of the study is caused by the need to get knowledge of the fundamental scientific problem - the ferromanganese precipitation of the World Ocean. Marine ferromanganese deposits are records of sedimentation conditions in the past as well as promising mineral raw materials. Their formation is carried out under various processes, which are reflected in the bulk and isotopic composition of ferromanganese deposits. Currently, the least studied region of the Pacific Ocean is its northern segment. The main aim of the research is to study Sr and Nd isotopic composition of the ferromanganese crusts from the Norther Pacific, formed under low detrital influx. Methods: litho-morphology; x-ray diffraction - determination of the mineral composition; mass spectrometric - determination of the chemical and isotopic composition. Results. Ferromanganese deposits of the guyots of the northern part of the Imperial Range (Detroit, Suzei, Hanzei) and the Amliya, Rat and Stailmate fracture zones, as well as the Vulkanolog Guyot (Magellan Seamounts), as a comparative material, were studied. Based on the mineralogical and geochemical bulk compositions, the studied ferromanganese deposits are classified as hydrogenetic ferromanganese crusts. The strontium isotopic composition of the studied samples is in the range from 0,70797 to 0,70919 (average 0,70885), with most of the samples concentrated at 0,709. At the same time, the content of strontium changes almost three times from 660 to 1700 ppm. The dependence of the isotopic composition on the concentration is not observed. The displacement of 87Sr/86Sr occurs towards volcanic rocks, which reflects the high amount of quartz-plagioclase admixture in the sample. The isotopic composition of neodymium, in terms of Ξ΅Nd, varies in the range from -3,5 to -3,0, which corresponds to the modern deep seawater of the North Pacific. An increase in Ξ΅Nd to -2,3 corresponds to a sample with the maximum terrigenous admixture. The minimum value of Ξ΅Nd (-4,4) was found in the bottom layer of the ferromanganese crust from the Hanzei Guyot. This value corresponds to the Miocene North Pacific Deep water. This is a reason to believe that in the Miocene the formation of the bulk composition of the North Pacific ferromanganese crusts was under North Atlantic Deep Waters entering through the Panama Gateway. The end of North Atlantic Deep Waters delivery to the Pacific was finished about five million years ago
Extraction-atomic-absorption determination of gold in marine ferromanganese formations after its concentration with dibutyl sulphide in toluene
ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π° Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΡΡ Π½Π°ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΏΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΌΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ Π·ΠΎΠ»ΠΎΡΠ° Π² ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°ΡΠ³Π°Π½ΡΠ΅Π²ΡΡ
ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡΡ
ΠΈ Π΄ΡΡΠ³ΠΈΡ
Π³Π΅ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΠ±ΡΠ΅ΠΊΡΠ°Ρ
Π² ΡΠ²ΡΠ·ΠΈ Ρ ΡΡΡΠ΅ΡΡΠ²ΡΡΡΠΈΠΌΠΈ Π·Π΄Π΅ΡΡ Ρ
ΠΈΠΌΠΈΠΊΠΎ-Π°Π½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΡΡΠ΄Π½ΠΎΡΡΡΠΌΠΈ ΠΈ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΡΠΌ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎΠΌ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΡΡ
ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΡΠΎΡΡΠ°Π²Π° ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°ΡΠ³Π°Π½ΡΠ΅Π²ΡΡ
ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Ρ Π½Π°Π΄Π΅ΠΆΠ½ΠΎ Π°ΡΡΠ΅ΡΡΠΎΠ²Π°Π½Π½ΡΠΌ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ Π² Π½ΠΈΡ
Π·ΠΎΠ»ΠΎΡΠ°. Π¦Π΅Π»Ρ: ΠΏΡΠΎΠ²Π΅ΡΠΊΠ° ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌΠΎΡΡΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠΈ Π·ΠΎΠ»ΠΎΡΠ° Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π½Π΅ΡΡΠ΅ΡΡΠ»ΡΡΠΈΠ΄ΠΎΠ² (Π΄ΠΈΠ±ΡΡΠΈΠ»ΡΡΠ»ΡΡΠΈΠ΄Π° Π² ΡΠΎΠ»ΡΠΎΠ»Π΅) ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π·ΠΎΠ»ΠΎΡΠ° Π² ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°ΡΠ³Π°Π½ΡΠ΅Π²ΡΡ
ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡΡ
Ρ ΡΠ»Π΅ΠΊΡΡΠΎΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΈΠΌ Π°ΡΠΎΠΌΠ½ΠΎ-Π°Π±ΡΠΎΡΠ±ΡΠΈΠΎΠ½Π½ΡΠΌ ΠΎΠΊΠΎΠ½ΡΠ°Π½ΠΈΠ΅ΠΌ, Π½Π°ΡΡΠ΄Ρ Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΎΠΉ ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΡ Π·ΠΎΠ»ΠΎΡΠ° Π΅Π³ΠΎ ΡΠΎΠΎΡΠ°ΠΆΠ΄Π΅Π½ΠΈΠ΅ΠΌ Ρ ΡΠ΅Π»Π»ΡΡΠΎΠΌ. ΠΠ±ΡΠ΅ΠΊΡΡ: ΠΏΡΠΎΠ±Ρ ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°ΡΠ³Π°Π½ΡΠ΅Π²ΡΡ
ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΈΠ· ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠ°ΠΉΠΎΠ½ΠΎΠ² ΡΠ΅Π²Π΅ΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΈ Π’ΠΈΡ
ΠΎΠ³ΠΎ ΠΎΠΊΠ΅Π°Π½Π°, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠΎΡΡΠΈΠΉΡΠΊΠΈΠΉ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΡΠΉ ΠΎΠ±ΡΠ°Π·Π΅Ρ ΡΠΎΡΡΠ°Π²Π° Ρ Π°ΡΡΠ΅ΡΡΠΎΠ²Π°Π½Π½ΡΠΌ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ Π·ΠΎΠ»ΠΎΡΠ° ΠΠΠΠ 603 (Π‘ΠΠ-6) ΠΈ ΡΡΠ°Π½Π΄Π°ΡΡ ΠΠ΅ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ»ΡΠΆΠ±Ρ Π‘Π¨Π NOD-A-1. ΠΠ΅ΡΠΎΠ΄Ρ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π·ΠΎΠ»ΠΎΡΠ° ΠΏΡΠΈ Π΅Π³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π² ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°ΡΠ³Π°Π½ΡΠ΅Π²ΡΡ
ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡΡ
ΠΏΠΎ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ°ΠΌ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠΈ Π΄ΠΈΠ±ΡΡΠΈΠ»ΡΡΠ»ΡΡΠΈΠ΄ΠΎΠΌ Π² ΡΠΎΠ»ΡΠΎΠ»Π΅ ΠΈ ΡΠΎΠΎΡΠ°ΠΆΠ΄Π΅Π½ΠΈΠ΅ΠΌ Ρ ΡΠ΅Π»Π»ΡΡΠΎΠΌ ΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΈΠΌ Π°ΡΠΎΠΌΠ½ΠΎ-Π°Π±ΡΠΎΡΠ±ΡΠΈΠΎΠ½Π½ΡΠΌ Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ. ΠΠ±ΡΠ°Π±ΠΎΡΠΊΠ° ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π° Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ°ΡΠΈΡΡΠΈΠΊΠΈ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠΈ Π·ΠΎΠ»ΠΎΡΠ° Ρ Π΄ΠΈΠ±ΡΡΠΈΠ»ΡΡΠ»ΡΡΠΈΠ΄ΠΎΠΌ Π² ΡΠΎΠ»ΡΠΎΠ»Π΅ ΠΏΠΎΠΊΠ°Π·Π°Π»Π° ΡΠ²ΠΎΠ΅ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²ΠΎ Π΄Π»Ρ ΡΠ΅Π»Π΅ΠΉ Π°Π½Π°Π»ΠΈΠ·Π° ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°ΡΠ³Π°Π½ΡΠ΅Π²ΡΡ
ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ, ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΏΡΠΎΡΠ΅Π΄ΡΡΠΎΠΉ ΡΠΎΠΎΡΠ°ΠΆΠ΄Π΅Π½ΠΈΡ Ρ ΡΠ΅Π»Π»ΡΡΠΎΠΌ, Π² ΡΠ²ΡΠ·ΠΈ Ρ Π΅Π΅ Π²ΡΡΠΎΠΊΠΎΠΉ ΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡΡ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠ΅ΠΉ ΠΈΠ·Π±Π°Π²Π»ΡΡΡΡΡ ΠΎΡ Π²Π»ΠΈΡΠ½ΠΈΡ ΠΌΠ°ΡΡΠΈΡΠ½ΡΡ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ², Π² ΠΏΠ΅ΡΠ²ΡΡ ΠΎΡΠ΅ΡΠ΅Π΄Ρ ΠΆΠ΅Π»Π΅Π·Π°, ΡΠΎΡΠΌΠΈΡΡΡΡΠ΅Π³ΠΎ ΠΌΠ΅ΡΠ°ΡΡΠ΅Π΅ Π½Π°Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ
Π»ΠΈΠ½ΠΈΠΉ ΠΏΡΠΈ Π°ΡΠΎΠΌΠ½ΠΎ-Π°Π±ΡΠΎΡΠ±ΡΠΈΠΎΠ½Π½ΠΎΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π·ΠΎΠ»ΠΎΡΠ°. ΠΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠΈ Π·ΠΎΠ»ΠΎΡΠ° Ρ Π΄ΠΈΠ±ΡΡΠΈΠ»ΡΡΠ»ΡΡΠΈΠ΄ΠΎΠΌ Π±ΡΠ»Π° Π°ΠΏΡΠΎΠ±ΠΈΡΠΎΠ²Π°Π½Π° Π΄Π»Ρ Π°Π½Π°Π»ΠΈΠ·Π° ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°ΡΠ³Π°Π½ΡΠ΅Π²ΡΡ
ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΈΠ· ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠ°ΠΉΠΎΠ½ΠΎΠ² ΡΠ΅Π²Π΅ΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΈ Π’ΠΈΡ
ΠΎΠ³ΠΎ ΠΎΠΊΠ΅Π°Π½Π°, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΡΡ
ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΡΠΎΡΡΠ°Π²Π° ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°ΡΠ³Π°Π½ΡΠ΅Π²ΡΡ
ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ - ΡΠΎΡΡΠΈΠΉΡΠΊΠΎΠΌ ΠΠΠΠ 603 (Π‘ΠΠ-6) ΠΈ Π°ΠΌΠ΅ΡΠΈΠΊΠ°Π½ΡΠΊΠΎΠΌ ΡΡΠ°Π½Π΄Π°ΡΡΠ΅ NOD-A-1. ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΠΎΠ·Π΄ΡΡΠ½ΠΎΡΡΡ
ΠΎΠΉ Π½Π°Π²Π΅ΡΠΊΠΈ 2 Π³ ΠΎΠ±ΡΠ°Π·ΡΠ° Π΄Π°Π»ΠΎ ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΠΏΡΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ³ΠΎ ΠΎΠ±ΡΠ°Π·ΡΠ° Π‘ΠΠ-6 Ρ Π°ΡΡΠ΅ΡΡΠΎΠ²Π°Π½Π½ΡΠΌ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ Π·ΠΎΠ»ΠΎΡΠ° 10Β±6 Π½Π³/Π³, Π½ΠΎ Π½Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΡΡΠΏΠ΅ΡΠ½ΠΎ ΠΏΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°ΡΡ ΠΎΠ±ΡΠ°Π·Π΅Ρ NOD-A-1, Π΄Π»Ρ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π±ΡΠ»ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ Π½Π΅Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ. Π ΡΡΠΎΠΉ ΡΠ²ΡΠ·ΠΈ Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π² Π΄Π°Π½Π½ΠΎΠΌ ΡΡΠ°Π½Π΄Π°ΡΡΠ΅ Π·ΠΎΠ»ΠΎΡΠ° ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡΠ΅ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ Π΅ΡΠ΅ Π±ΠΎΠ»ΡΡΠΈΡ
Π½Π°Π²Π΅ΡΠΎΠΊ. ΠΡΠΎΠΌΠ½ΠΎ-Π°Π±ΡΠΎΡΠ±ΡΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π·ΠΎΠ»ΠΎΡΠ° Π² ΠΈΠ·ΡΡΠ΅Π½Π½ΡΡ
ΠΎΠ±ΡΠ°Π·ΡΠ°Ρ
ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°ΡΠ³Π°Π½ΡΠ΅Π²ΡΡ
ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΠΎ ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅ΠΌΠΎΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ, ΠΎΡΠ²Π΅ΡΠ°ΡΡΠΈΠ΅ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΡΠΌ Π³Π΅ΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°, Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅ ΠΈ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΠ‘Π-ΠΠ‘ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ. ΠΠ΄Π½Π°ΠΊΠΎ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ ΡΠ°Π½Π΅Π΅ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎ-ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°ΡΠ³Π°Π½ΡΠ΅Π²ΡΡ
ΠΊΠΎΡΠΎΠΊ ΡΠ΅Π²Π΅ΡΠΎ-Π·Π°ΠΏΠ°Π΄Π½ΠΎΠΉ ΡΠ°ΡΡΠΈ Π’ΠΈΡ
ΠΎΠ³ΠΎ ΠΎΠΊΠ΅Π°Π½Π° Π²ΡΡΠ²ΠΈΠ»ΠΎ ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠ΅ Π² Π½ΠΈΡ
ΡΠ°ΡΡΠΈΡ ΡΠ°ΠΌΠΎΡΠΎΠ΄Π½ΠΎΠ³ΠΎ Π·ΠΎΠ»ΠΎΡΠ°, ΡΡΠΎ ΠΌΠΎΠΆΠ΅Ρ, Π² ΡΠ²ΠΎΡ ΠΎΡΠ΅ΡΠ΅Π΄Ρ, Π²ΡΠ·ΡΠ²Π°ΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡΠΈ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΠΎΡΠ±ΠΎΡΠ° ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΏΡΠΎΠ±Ρ ΠΈ Π² ΠΏΡΠΎΡΠ΅Π΄ΡΡΠ΅ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°ΡΠ³Π°Π½ΡΠ΅Π²ΡΡ
ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΊ Π°Π½Π°Π»ΠΈΠ·Ρ.The relevance of the study is caused by the need to develop methodological solutions for the quantitative determination of gold content in ferromanganese formations and other geological objects due to the chemical and analytical difficulties that exist here and the insufficient number of certified reference materials of ferromanganese formations with a reliably certified gold content in them. The main aim is verification of the applicability of the gold extraction technique using petroleum sulfides (dibutyl sulfide in toluene) f or determining gold in ferromanganese formations with electrothermal atomic absorption termination, along with the gold extraction method by its co-precipitation with tellurium. Objects: samples of ferromanganese formations from various regions of the North Pacific Ocean, as well as the Russian certified reference materials with a certified gold content OOPE 603 (SDO-6) and the USGS standard NOD-A-1. Methods. Gold was concentrated during its determination in ferromanganese formations by the methods of extraction with dibutyl sulfide in toluene and co-precipitation with tellurium and electrothermal atomic absorption analysis. Processing of the obtained results was carried out using the methods of mathematical statistics. Results. The method of gold extraction with dibutyl sulfide in toluene has shown its advantage for the purposes of analysis of ferroma nganese formations in comparison with the procedure of co-precipitation with tellurium, due to its high selectivity, which makes it possible to get rid of the influence of matrix components, primarily iron, which forms an interfering superposition of spectral lines during atomic absorption determination of gold. The technique of gold extraction with dibutyl sulfide was tested for the analysis of ferromanganese formations samples from various regions of the North Pacific Ocean, as well as for the analysis of ferromanganese formations samples - the Russian OOPE 603 (SDO-6) and the American standard NOD-A-1. The use of an air-dry sample of 2 g of the sample gave a satisfactory result in the analysis of the standard sample SDO-6, with a certified gold content of 10Β±6 ng/g, but did not allow successful analysis of the NOD-A-1 sample, for which irreproducible results were obtained. In this regard, the use of even larger weights is recommended for defining gold in this standard. Atomic absorption determination of gold in the studied ferromanganese formations samples using the proposed method gave results that meet the requirements of geochemical analysis, including in comparison with the ICP-MS method. However, an earlier electron microscopic study of ferromanganese crusts in the northwestern part of the Pacific Ocean showed the presence of native gold particles in them, which, in its turn, can cause methodological difficulties in the process of taking a representative sample and d the procedure for preparing ferromanganese formations samples for analysis
Production patterns in the estuary of the Razdolnaya River in period of freezing
Light conditions and nutrients supply, as factors of primary production, are considered for the Razdolnaya River estuary in period of freezing (January-March). Water samples were collected at the water surface and at the bottom for measuring of salinity and concentrations of chlorophyll (Chl), phosphate, nitrite, nitrate, ammonium, and silicate. Profiles of water temperature, conductivity, Chl fluorescence, and turbidity were measured in situ by CTD-probe RBR XR-620; besides, vertical attenuation of PAR was measured at each station. The internal estuary (salinity 5 FTU) and high concentration of humine substances (up to 2 mgC/l) in the river waters. The ice cover lowered light intensity in the river water, too. In the zone close to the river bar with salinity 1-25 β°, Chl concentration was 0.4-1.7 mg/m3 irrespective of salinity. DIN (dissolved inorganic nitrogen) and DISi (dissolved inorganic silicon) had conservative behaviour in this zone, the DISi : DIN ratio was β 0.7-1.1.These features indicate an absence of significant production or destruction of organic matter in the internal estuary. However, intensive removal of dissolved inorganic phosphorus (DIP) (up to 80 %) was observed in this zone, thatβs why the extraordinary high DIN : DIP ratio was observed under salinity 5-20 β° (up to 200 : 1, though the usual DIN : DIP ratio in the river water is close to Redfild ratio: DIN : DIP = (21-27) : 1). In the external estuary (salinity15-32 β°), the water became more transparent ( kd = 0.5-0.3 m-1; zeu β 9-15 m) and both chlorophyll concentration and dissolved oxygen content became higher (Chl up to 20 mg/m3, DO up to 500 mM/kg) as the result of high primary production, whereas nutrients concentrations became lower: DIP were completely removed and DIN and DISi retained 10-25 % of their initial values in the river water. The primary production value was evaluated by two ways: on the data of light intensity and on the data of nutrients removal. The light conditions in the internal estuary in February-March corresponded to the value 20-80 mgC/m2d which declines in 6-13 times and 50-100 times (close to zero) under the ice and under the ice with snow, respectively. In the external estuary, the light conditions in March corresponded to the value 300-600 mgC/m2d in the areas without ice and to the value lower in 6-13 times under the ice. The nutrients removal corresponded to the primary production value β 200-400 mgC/m2d in the external estuary, irrespective of ice cover, that is close to the previous estimation by light conditions. So, the primary production in the Razdolnaya River estuary changes in winter in the range from 0 to 500 mgC/m2d, increasing seaward, the ice and snow are the factors of its limitation by light