51 research outputs found

    Synthesis, Self-Assembly and In Vitro Cellular Uptake Kinetics of Nanosized Drug Carriers Based on Aggregates of Amphiphilic Oligomers of N-Vinyl-2-pyrrolidone

    Get PDF
    Development of nanocarrier-based drug delivery systems is a major breakthrough in pharmacology, promising targeted delivery and reduction in drug toxicity. On the cellular level, encapsulation of a drug substantially affects the endocytic processes due to nanocarrier–membrane interaction. In this study we synthesized and characterized nanocarriers assembled from amphiphilic oligomers of N-vinyl-2-pyrrolidone with a terminal thiooctadecyl group (PVP-OD). It was found that the dissolution free energy of PVP-OD depends linearly on the molecular mass of its hydrophilic part up to [Formula: see text] = 2 × 10(4), leading to an exponential dependence of critical aggregation concentration (CAC) on the molar mass. A model hydrophobic compound (DiI dye) was loaded into the nanocarriers and exhibited slow release into the aqueous phase on a scale of 18 h. Cellular uptake of the loaded nanocarriers and that of free DiI were compared in vitro using glioblastoma (U87) and fibroblast (CRL2429) cells. While the uptake of both DiI/PVP-OD nanocarriers and free DiI was inhibited by dynasore, indicating a dynamin-dependent endocytic pathway as a major mechanism, a decrease in the uptake rate of free DiI was observed in the presence of wortmannin. This suggests that while macropinocytosis plays a role in the uptake of low-molecular components, this pathway might be circumvented by incorporation of DiI into nanocarriers

    Ocean-bottom seismographs based on broadband MET sensors: architecture and deployment case study in the Arctic

    Get PDF
    The Arctic seas are now of particular interest due to their prospects in terms of hydrocarbon extraction, development of marine transport routes, etc. Thus, various geohazards, including those related to seismicity, require detailed studies, especially by instrumental methods. This paper is devoted to the ocean-bottom seismographs (OBS) based on broadband molecular–electronic transfer (MET) sensors and a deployment case study in the Laptev Sea. The purpose of the study is to introduce the architecture of several modifications of OBS and to demonstrate their applicability in solving different tasks in the framework of seismic hazard assessment for the Arctic seas. To do this, we used the first results of several pilot deployments of the OBS developed by Shirshov Institute of Oceanology of the Russian Academy of Sciences (IO RAS) and IP Ilyinskiy A.D. in the Laptev Sea that took place in 2018–2020. We highlighted various seismological applications of OBS based on broadband MET sensors CME-4311 (60 s) and CME-4111 (120 s), including the analysis of ambient seismic noise, registering the signals of large remote earthquakes and weak local microearthquakes, and the instrumental approach of the site response assessment. The main characteristics of the broadband MET sensors and OBS architectures turned out to be suitable for obtaining high-quality OBS records under the Arctic conditions to solve seismological problems. In addition, the obtained case study results showed the prospects in a broader context, such as the possible influence of the seismotectonic factor on the bottom-up thawing of subsea permafrost and massive methane release, probably from decaying hydrates and deep geological sources. The described OBS will be actively used in further Arctic expeditions

    Skills of Thunderstorm Prediction by Convective Indices over a Metropolitan Area: Comparison of Microwave and Radiosonde Data

    No full text
    In this work, we compare the values of 15 convective indices obtained from radiosonde and microwave temperature and water vapor profiles simultaneously measured over Nizhny Novgorod (56.2°N, 44°E) during 5 convective seasons of 2014–2018. A good or moderate correlation (with coefficients of ~0.7–0.85) is found for most indices. We assess the thunderstorm prediction skills with a lead time of 12 h for each radiosonde and microwave index. It is revealed that the effectiveness of thunderstorm prediction by microwave indices is much better than by radiosonde ones. Moreover, a good correlation between radiosonde and microwave values of a certain index does not necessarily correspond to similar prediction skills. Eight indices (Showalter Index, Maximum Unstable Convective Available Potential Energy (CAPE), Total Totals index, TQ index, Jefferson Index, S index, K index, and Thompson index) are regarded to be the best predictors from both the true skill statistics (TSS) maximum and Heidke skill score (HSS) maximum points of view. In the case of radiosonde data, the best indices are the Jefferson Index, K index, S index, and Thompson index. Only TSS and HSS maxima for these indices are close to the microwave ones, whereas the prediction skills of other radiosonde indices are essentially worse than in the case of microwave data. The analysis suggests that the main possible reason of this discrepancy is an unexpectedly low quality of radiosonde data

    Validation of Atmospheric Absorption Models within the 20–60 GHz Band by Simultaneous Radiosonde and Microwave Observations: The Advantage of Using ECS Formalism

    No full text
    The precise calculation of atmospheric absorption in a microwave band is highly important for atmospheric remote-sensing with ground-based and satellite-borne radiometers, as it is a key element in procedures for temperature, humidity or trace gas concentration retrieval. The accuracy of the absorption model directly affects the accuracy of the retrieved information and reliability of the resulting forecasts. In this study, we analyze the difference between observed and simulated microwave spectra obtained from more than four years of microwave and radiosonde observations over Nizhny Novgorod (56.2°N, 44°E). We focus on zenith-measured microwave data in the 20–60 GHz frequency range in clear-sky conditions. The use of a conventional absorption model in simulations leads to a significant difference in frequency channels within the 51–54 GHz range, while calculations employing a more accurate model based on the Energy Corrected Sudden (ECS) formalism for molecular oxygen absorption reduces the difference several-fold

    High Precision Measurements of Resonance Frequency of Ozone Rotational Transition J = 6<sub>1,5</sub>–6<sub>0,6</sub> in the Real Atmosphere

    No full text
    Ground-based passive measurements of downwelling atmospheric radiation at ~110.836 GHz allow extracting the spectra of ozone self-radiation (rotational transition J = 61,5–60,6) coming from the low stratosphere–mesosphere and retrieving vertical profiles of ozone concentration at these altitudes. There is a notable (several hundred kHz) ambiguity in the determination of the resonance frequency of this important ozone line. We carried out long-term ground-based measurements of atmospheric microwave radiation in this range using upgraded apparatus with high technical accuracy and spectral resolution (~12 kHz). The obtained brightness temperature spectra allowed us to determine the frequency of this ozone line to be 110,835.909 ± 0.016 MHz. We verified that the Doppler frequency shift by horizontal wind as well as the variations of the tropospheric absorption had little effect on the obtained result. The found value was 131 ± 16 kHz less than that measured in the laboratory and differed from modern model calculations. At the same time, it was close to the results of early semiempirical calculations made more than 40 years ago. The applications where precise knowledge about the resonance frequency of this ozone line can be important were discussed in this paper

    Structure, Energy, and Vibrational Frequencies of Oxygen Allotropes O<sub><i>n</i></sub> (<i>n</i> ≤ 6) in the Covalently Bound and van der Waals Forms: Ab Initio Study at the CCSD(T) Level

    No full text
    Recent experiments on the UV and electron beam irradiation of solid O<sub>2</sub> reveals a series of IR features near the valence antisymmetric vibration band of O<sub>3</sub> which are frequently interpreted as the formation of unusual O<sub><i>n</i></sub> allotropes in the forms of weak complexes or covalently bound molecules. In order to elucidate the question of the nature of the irradiation products, the structure, relative energies, and vibrational frequencies of various forms of O<sub><i>n</i></sub> (<i>n</i> = 1–6) in the singlet, triplet, and, in some cases, quintet states were studied using the CCSD­(T) method up to the CCSD­(T,full)/cc-pCVTZ and CCSD­(T,FC)/aug-cc-pVTZ levels. The results of calculations demonstrate the existence of stable highly symmetric structures O<sub>4</sub> (D<sub>3h</sub>), O<sub>4</sub> (D<sub>2d</sub>), and O<sub>6</sub> (D<sub>3d</sub>) as well as the intermolecular complexes O<sub>2</sub>·O<sub>2</sub>, O<sub>2</sub>·O<sub>3</sub>, and O<sub>3</sub>·O<sub>3</sub> in different conformations. The calculations show that the local minimum corresponding to the O<sub>3</sub>···O complex is quite shallow and cannot explain the ν<sub>3</sub> band features close to 1040 cm<sup>–1</sup>, as was proposed previously. For the ozone dimer, a new conformer was found which is more stable than the structure known to date. The effect of the ozone dimer on the registered IR spectra is discussed

    Structure, Energy, and Vibrational Frequencies of Oxygen Allotropes On (n ≤ 6) in the Covalently Bound and van der Waals Forms: Ab Initio Study at the CCSD(T) Level

    Get PDF
    Recent experiments on the UV and electron beam irradiation of solid O2 reveals a series of IR features near the valence antisymmetric vibration band of O3 which are frequently interpreted as the formation of unusual On allotropes in the forms of weak complexes or covalently bound molecules. In order to elucidate the question of the nature of the irradiation products, the structure, relative energies, and vibrational frequencies of various forms of On (n = 1−6) in the singlet, triplet, and, in some cases, quintet states were studied using the CCSD(T) method up to the CCSD(T,full)/cc-pCVTZ and CCSD(T,FC)/aug-cc-pVTZ levels. The results of calculations demonstrate the existence of stable highly symmetric structures O4(D3h), O4 (D2d), and O6 (D3d) as well as the intermolecular complexes O2·O2, O2·O3, and O3·O3 in different conformations. The calculations show that the local minimum corresponding to the O3···O complex is quite shallow and cannot explain the ν3 band features close to 1040 cm−1, as was proposed previously. For the ozone dimer, a new conformer was found which is more stable than the structure known to date. The effect of the ozone dimer on the registered IR spectra is discussed
    corecore