124 research outputs found
Impact of urban canopy parameters on a megacity’s modelled thermal environment
Urban canopy parameters (UCPs) are essential in order to accurately model the complex interplay between urban areas and their environment. This study compares three different approaches to define the UCPs for Moscow (Russia), using the COSMO numerical weather prediction and climate model coupled to TERRA_URB urban parameterization. In addition to the default urban description based on the global datasets and hard-coded constants (1), we present a protocol to define the required UCPs based on Local Climate Zones (LCZs) (2) and further compare it with a reference UCP dataset, assembled from OpenStreetMap data, recent global land cover data and other satellite imagery (3). The test simulations are conducted for contrasting summer and winter conditions and are evaluated against a dense network of in-situ observations. For the summer period, advanced approaches (2) and (3) show almost similar performance and provide noticeable improvements with respect to default urban description (1). Additional improvements are obtained when using spatially varying urban thermal parameters instead of the hard-coded constants. The LCZ-based approach worsens model performance for winter however, due to the underestimation of the anthropogenic heat flux (AHF). These results confirm the potential of LCZs in providing internationally consistent urban data for weather and climate modelling applications, as well as supplementing more comprehensive approaches. Yet our results also underline the continued need to improve the description of built-up and impervious areas and the AHF in urban parameterizations
Observations of the urban boundary layer in a cold climate city
Cold environment supports a large diversity of local climates. Among them, urban climates in northern cities stand out for their pronounced warm temperature anomaly known as the Urban Heat Island (UHI). UHI in northern cities has been already studies through satellite images and in-situ observations in the urban canopy layer (UCL). Yet, the vertical structure of the urban atmospheric boundary layer (UBL) has not been studied there. This work presents new observations of UBL in Nadym – a sub-Arctic Siberian city. During several intensive observing periods we run simultaneous registration of urban and rural meteorological parameters with unmanned drones, a microwave temperature profiler and a dense network of ground-based sensors. The data analysis reveals details of UHI development in the UCL and UBL, and links together horizontal urban-rural canopy-layer temperature differences, boundary layer stability, and UHI vertical extent. We show that during strong temperature inversions, UBL is less stratified than its rural counterpart, but it still remains very thin and limited in height by a few tens of meters. The observations disclose that the ground-based (50 m – 100 m above ground) temperature inversion is one of the strongest control factors for UHI in cold climate conditions in winter
Quantifying Local and Mesoscale Drivers of the Urban Heat Island of Moscow with Reference and Crowdsourced Observations
Urban climate features, such as the urban heat island (UHI), are determined by various factors characterizing the modifications of the surface by the built environment and human activity. These factors are often attributed to the local spatial scale (hundreds of meters up to several kilometers). Nowadays, more and more urban climate studies utilize the concept of the local climate zones (LCZs) as a proxy for urban climate heterogeneity. However, for modern megacities that extend to dozens of kilometers, it is reasonable to suggest a significant contribution of the larger-scale factors to the temperature and UHI climatology. In this study, we investigate the contribution of local-scale and mesoscale driving factors of the nocturnal canopy layer UHI of the Moscow megacity in Russia. The study is based on air temperature observations from a dense network consisting of around 80 reference and more than 1,500 crowdsourced citizen weather stations for a summer and a winter season. For the crowdsourcing data, an advanced quality control algorithm is proposed. Based on both types of data, we show that the spatial patterns of the UHI are shaped both by local-scale and mesoscale driving factors. The local drivers represent the surface features in the vicinity of a few hundred meters and can be described by the LCZ concept. The mesoscale drivers represent the influence of the surrounding urban areas in the vicinity of 2–20 km around a station, transformed by diffusion, and advection in the atmospheric boundary layer. The contribution of the mesoscale drivers is reflected in air temperature differences between similar LCZs in different parts of the megacity and in a dependence between the UHI intensity and the distance from the city center. Using high-resolution city-descriptive parameters and different statistical analysis, we quantified the contributions of the local- and mesoscale driving factors. For selected cases with a pronounced nocturnal UHI, their respective contributions are of similar magnitude. Our findings highlight the importance of taking both local- and mesoscale effects in urban climate studies for megacities into account. Furthermore, they underscore a need for an extension of the LCZ concept to take mesoscale settings of the urban environment into account.DFG, 437467569, ENLIGHT – ENabling the anaLysIs of Global urban Hea
Evaluating the Urban Canopy Scheme TERRA_URB in the COSMO Model for Selected European Cities
The increase in built surfaces constitutes the main reason for the formation of the Urban Heat Island (UHI), that is a metropolitan area significantly warmer than its surrounding rural areas. The urban heat islands and other urban-induced climate feedbacks may amplify heat stress and urban flooding under climate change and therefore to predict them correctly has become essential. Currently in the COSMO model, cities are represented by natural land surfaces with an increased surface roughness length and a reduced vegetation cover, but this approach is unable to correctly reproduce the UHI effect. By increasing the model resolution, a representation of the main physical processes that characterize the urban local meteorology should be addressed, in order to better forecast temperature, moisture and precipitation in urban environments. Within the COSMO Consortium a bulk parameterization scheme (TERRA_URB or TU) has been developed. It parametrizes the effects of buildings, streets and other man-made impervious surfaces on energy, moist and momentum exchanges between the surface and atmosphere, and additionally accounts for the anthropogenic heat flux as a heat source from the surface to the atmosphere. TU implements an impervious water-storage parameterization, and the Semi-empirical Urban canopy parametrization (SURY) that translates 3D urban canopy into bulk parameters. This paper presents evaluation results of the TU scheme in high-resolution simulations with a recent COSMO model version for selected European cities, namely Turin, Naples and Moscow. The key conclusion of the work is that the TU scheme in the COSMO model reasonably reproduces UHI effect and improves air temperature forecasts for all the investigated urban areas, despite each city has very different morphological characteristics. Our results highlight potential benefits of a new turbulence scheme and the representation of skin-layer temperature (for vegetation) in the model performance. Our model framework provides perspectives for enhancing urban climate modelling, although further investigations in improving model parametrizations, calibration and the use of more realistic urban canopy parameters are needed
An enhanced integrated approach to knowledgeable high-resolution environmental quality assessment
Sustaining urban environmental quality requires effective policy measures that integrate local monitoring and contextualized high-resolution modelling with actionable scenarios. Knowledgeable decision making in this field can nowadays be supported by an array of atmospheric models, but their transfer into an Integrated Urban hydrometeorological, climate and environmental Services (IUS) remains challenging. Methodological aspects that are beyond pure technicalities of the model-to-model coupling are still poorly explored. Modeling downscaling chains lack their most user-relevant link - urban-to-neighborhood scale observations and models. This study looks at a socio-environmental context of the high-resolution atmospheric modeling in the case study of the Arctic urban cluster of Apatity and Kirovsk, Russia. We demonstrate that atmospheric dynamics of the lowermost, turbulent air layers is highly localized during the most influential episodes of atmospheric pollution. Urban micro-climates create strong circulations (winds) that are sensitive to the local environmental context. As the small-scale turbulence dynamics is not spatially resolved in meteorological downscaling or statistical modeling, capturing this local context requires specialized turbulence-resolving (large-eddy simulation) models. Societal acceptance of the urban modeling could be increased in the IUS with horizontally integrated modeling driven by localized scenarios. This study presents an enhanced integrated approach, which incorporates a large-eddy simulation model PALM into meteorological downscaling chains of a climate model (EC-EARTH), a numerical weather prediction - atmospheric chemical transport model (ENVIRO-HIRLAM) and a regional-scale meteorological model (COSMO-CLM). We discuss how this approach could be further developed into an environmental component of a digital "smart city".Peer reviewe
Impact of Urban Canopy Parameters on a Megacity’s Modelled Thermal Environment
Urban canopy parameters (UCPs) are essential in order to accurately model the complex interplay between urban areas and their environment. This study compares three different approaches to define the UCPs for Moscow (Russia), using the COSMO numerical weather prediction and climate model coupled to TERRA_URB urban parameterization. In addition to the default urban description based on the global datasets and hard-coded constants (1), we present a protocol to define the required UCPs based on Local Climate Zones (LCZs) (2) and further compare it with a reference UCP dataset, assembled from OpenStreetMap data, recent global land cover data and other satellite imagery (3). The test simulations are conducted for contrasting summer and winter conditions and are evaluated against a dense network of in-situ observations. For the summer period, advanced approaches (2) and (3) show almost similar performance and provide noticeable improvements with respect to default urban description (1). Additional improvements are obtained when using spatially varying urban thermal parameters instead of the hard-coded constants. The LCZ-based approach worsens model performance for winter however, due to the underestimation of the anthropogenic heat flux (AHF). These results confirm the potential of LCZs in providing internationally consistent urban data for weather and climate modelling applications, as well as supplementing more comprehensive approaches. Yet our results also underline the continued need to improve the description of built-up and impervious areas and the AHF in urban parameterizations
Integration of the multidisciplinary knowledge as a basis for the development of competence of cadets of military schools of the Ministry of internal Affairs of Russia
Megacity-Induced Mesoclimatic Effects in the Lower Atmosphere: A Modeling Study for Multiple Summers over Moscow, Russia
Urbanization leads to distinct meteorological features of urban environments, and one the best-known is the urban heat island (UHI) effect. For megacities, these features become mesoscale phenomena (scale ≥ 10 km) that are amplified by the tropospheric feedbacks, and have substantial implications on human well-being. For the first time, a three-dimensional statistical description of the megacity-induced meteorological effects extending towards the lower troposphere for summer is acquired on a quasi-climatological timescale (a decade) based on high-resolution (1 km) simulations for Moscow with the COSMO-CLM model with and without its urban canopy model TERRA_URB. Our results confirm the features from previous observational and modeling studies, including the UHI itself, the cooling effect above established by the cross-over effect, the urban dry/moist islands and the urban breeze circulation. Particularly, the UHI shows a strong diurnal variation in terms of intensity and vertical extent between daytime (≈0.5 K/≈1.5 km) and nighttime (>3 K/≈150 m). We have discovered a systematic veering in the downwind shift of the UHI spatial pattern established by the Coriolis effect, and an enhanced stable stratification of the rural surroundings established by the urban plumes further downwind. Finally, extending the analysis to multiple summers demonstrates a substantial increase in summer precipitation (up to +25%) over the city center and its leeward side. These urban-caused mesoclimatic effects need to be taken into account in weather and climate services, including the design of future megacities
A new detailed long-term hydrometeorological dataset: first results of extreme characteristics estimations for the Russian Arctic seas
Introducing a New Detailed Long-Term COSMO-CLM Hindcast for the Russian Arctic and the First Results of Its Evaluation
Diverse and severe weather conditions and rapid climate change rates in the Arctic emphasize the need for high-resolution climatic and environmental data that cannot be obtained from the scarce observational networks. This study presents a new detailed hydrometeorological dataset for the Russian Arctic region, obtained as a long-term hindcast with the nonhydrostatic atmospheric model COSMO-CLM for the 1980–2016 period. The modeling workflow, evaluation techniques, and preliminary analysis of the obtained dataset are discussed. The model domain included the Barents, Kara, and Laptev Seas with ≈12-km grid spacing. The optimal model setup was chosen based on preliminary simulations for several summer and winter periods with varied options, and included the usage of ERA-Interim reanalysis data as forcing data, the new model version 5.05 with so-called ICON-based physics, and a spectral nudging technique. The wind speed and temperature climatology in the new COSMO-CLM dataset closely agreed with the ERA-Interim reanalysis, but with detailed spatial patterns. The added value of the higher-resolution COSMO-CLM data with respect to the ERA-Interim was most pronounced for higher wind speeds during downslope windstorms with the influence of mountain ranges on the temperature patterns, including surface temperature inversions. The potential applications and plans of further product development are also discussed
- …
