12 research outputs found

    Effets de la reprogrammation sur le gène empreinté H19 chez les équins

    Full text link
    Lors de la fécondation, le génome subit des transformations épigénétiques qui vont guider le développement et le phénotype de l’embryon. L'avènement des techniques de reprogrammation cellulaire, permettant la dédifférenciation d'une cellule somatique adulte, ouvre la porte à de nouvelles thérapies régénératives. Par exemple, les procédures de transfert nucléaire de cellules somatique (SCNT) ainsi que la pluripotence par induction (IP) visent à reprogrammer une cellule somatique adulte différentiée à un état pluripotent similaire à celui trouvé durant la fécondation chez l'embryon sans en impacter l'expression génique vitale au fonctionnement cellulaire. Cependant, la reprogrammation partielle est souvent associée à une mauvaise méthylation de séquences géniques responsables de la régulation des empreintes géniques. Ces gènes, étudiés chez la souris, le bovin et l'humain, sont exprimés de manière monoallélique, parent spécifique et sont vitaux pour le développement embryonnaire. Ainsi, nous avons voulu définir le statut épigénétique du gène empreinté H19 chez l'équin, autant chez le gamètes que les embryons dérivés de manière in vivo, SCNT ainsi que les cellules pluripotentes induites (iPSC). Une région contrôle empreinté (ICR) riche en îlots CpG a été observée en amont du promoteur. Couplé avec une analyse de transcrit parent spécifique du gène H19, nous avons confirmé que l'empreinte du gène H19 suit le modèle insulaire décrit chez les autres mammifères étudiés et résiste à la reprogrammation induite par SCNT ou IP. La déméthylation partielle de l'ICR observée chez certains échantillons reprogrammés n'était pas suffisante pour induire une expression biallélique, suggérant un contrôle des empreintes chez les équins durant la reprogrammation.After fertilization, the animal genome undergoes a complex epigenetic remodeling that dictates the growth and phenotypic signature of the animal. The development of reprogramming methods using adult differentiated cells as the primordial genetic source has opened the door to new regenerative therapies for animals. Somatic cell nuclear transfer (SCNT) and induced pluripotency are two techniques which aim to reprogram a cell from its adult differentiated state to an embryonic-like pluripotency level, without impairing the expression of genes vital for the cellular function. Albeit promising, the mechanisms involved in these techniques remain only moderately understood. Partial reprogramming is frequently associated with irregular methylation of DNA sequences responsible for imprint regulation. These imprinted genes, mostly studied in rodents, cattle and humans, are expressed in a monoallelic parent-specific fashion and are vital for embryo growth. Hence, we aim to define the equine H19 imprinting control region (ICR) in gametes, in vivo and in SCNT derived embryos, as well as in induced pluripotent stem cells (iPSC). A CpG rich ICR was characterized upstream of the promotor using bisulfite treated DNA sequencing. Coupled with parent-specific gene expression analysis, we confirmed that the imprinted gene H19 is resistant to cellular reprogramming, and that partial demethylation of its ICR does not result in biallelic expression, suggesting that equine species have rigorous imprint maintenance during cellular reprogramming

    Transcriptome profile of lung dendritic cells after in vitro porcine reproductive and respiratory syndrome virus (PRRSV) infection

    Get PDF
    The porcine reproductive and respiratory syndrome (PRRS) is an infectious disease that leads to high financial and production losses in the global swine industry. The pathogenesis of this disease is dependent on a multitude of factors, and its control remains problematic. The immune system generally defends against infectious diseases, especially dendritic cells (DCs), which play a crucial role in the activation of the immune response after viral infections. However, the understanding of the immune response and the genetic impact on the immune response to PRRS virus (PRRSV) remains incomplete. In light of this, we investigated the regulation of the host immune response to PRRSV in porcine lung DCs using RNA-sequencing (RNA-Seq). Lung DCs from two different pig breeds (Pietrain and Duroc) were collected before (0 hours) and during various periods of infection (3, 6, 9, 12, and 24 hours post infection (hpi)). RNA-Seq analysis revealed a total of 20,396 predicted porcine genes, which included breed-specific differentially expressed immune genes. Pietrain and Duroc infected lung DCs showed opposite gene expression courses during the first time points post infection. Duroc lung DCs reacted more strongly and distinctly than Pietrain lung DCs during these periods (3, 6, 9, 12 hpi). Additionally, cluster analysis revealed time-dependent co-expressed groups of genes that were involved in immune-relevant pathways. Key clusters and pathways were identified, which help to explain the biological and functional background of lung DCs post PRRSV infection and suggest IL-1β1 as an important candidate gene. RNA-Seq was also used to characterize the viral replication of PRRSV for each breed. PRRSV was able to infect and to replicate differently in lung DCs between the two mentioned breeds. These results could be useful in investigations on immunity traits in pig breeding and enhancing the health of pigs

    Transcriptome profile of lung dendritic cells after in vitro porcine reproductive and respiratory syndrome virus (PRRSV) infection

    Get PDF
    The porcine reproductive and respiratory syndrome (PRRS) is an infectious disease that leads to high financial and production losses in the global swine industry. The pathogenesis of this disease is dependent on a multitude of factors, and its control remains problematic. The immune system generally defends against infectious diseases, especially dendritic cells (DCs), which play a crucial role in the activation of the immune response after viral infections. However, the understanding of the immune response and the genetic impact on the immune response to PRRS virus (PRRSV) remains incomplete. In light of this, we investigated the regulation of the host immune response to PRRSV in porcine lung DCs using RNA-sequencing (RNA-Seq). Lung DCs from two different pig breeds (Pietrain and Duroc) were collected before (0 hours) and during various periods of infection (3, 6, 9, 12, and 24 hours post infection (hpi)). RNA-Seq analysis revealed a total of 20,396 predicted porcine genes, which included breed-specific differentially expressed immune genes. Pietrain and Duroc infected lung DCs showed opposite gene expression courses during the first time points post infection. Duroc lung DCs reacted more strongly and distinctly than Pietrain lung DCs during these periods (3, 6, 9, 12 hpi). Additionally, cluster analysis revealed time-dependent co-expressed groups of genes that were involved in immune-relevant pathways. Key clusters and pathways were identified, which help to explain the biological and functional background of lung DCs post PRRSV infection and suggest IL-1β1 as an important candidate gene. RNA-Seq was also used to characterize the viral replication of PRRSV for each breed. PRRSV was able to infect and to replicate differently in lung DCs between the two mentioned breeds. These results could be useful in investigations on immunity traits in pig breeding and enhancing the health of pigs
    corecore