58 research outputs found

    Relicts of Neo-Tethyan mantle wedge in the Indo-Burma Range, India: Record of carbonate metasomatism and Neo-Tethyan mantle evolution

    Get PDF
    Several different geochemical signatures, i.e., mid-oceanic ridge (MOR) and supra subduction zone (SSZ), are frequently reported from ophiolite belts. Such bi-modal geochemical signatures are generally interpreted in terms of formation in two contrasting tectonic settings: divergent and convergent settings with associated petrogenetic processes. Whilst MOR-like and SSZ-like geochemical signatures are well understood in general terms, their combined occurrence in the peridotite component of ophiolite belts is not fully understood. Here, we describe the geochemically comparable Nagaland and Manipur ophiolites which are part of a same belt located in the Indo-Burma Range, India, and represent part of the eastern Tethys regime. In this study we explore the mechanisms which are responsible for this dual geochemical signature in a contiguous ophiolite belt formed during the closure of eastern Neo-Tethys. The existing and new whole-rock Nd isotopic signatures in the serpentinized peridotites from the Manipur ophiolite reveal that the dual geochemical signatures observed in the peridotites are due to patchy metasomatism of the mantle wedge. Thus, the entire mantle section peridotite in the Nagaland and Manipur ophiolites represents a relic of that Neo-Tethyan mantle wedge and this is also supported by the occurrence of high Cs/Th and low U/Th in the serpentinised peridotites. Further, variation of LaN/YbN, SmN/HfN, Ti/Eu, Zr/Hf, Ca/Al and Mg# observed in the secondary and primary clinopyroxenes of the studied peridotites can be explained by an influx of carbonate-rich fluid derived from subducted pelagic limestone. Elemental zoning and associated modeling of clinopyroxenes also clarify that the mantle metasomatism and different degrees of partial melting in the mantle wedge were responsible for the heterogeneity of the Neo-Tethyan mantle preserved in the Nagaland and Manipur ophiolites of the Indo-Burma Range

    Contrasting TiO2 compositions in early cenozoic mafic sills of the Faroe Islands : an example of basalt formation from distinct melting regimes

    Get PDF
    The Paleocene lava succession of the Faroe Islands Basalt Group (FIBG), which is a part of the North Atlantic Igneous Province (NAIP), is intruded by numerous basaltic sills. These can be grouped into three main categories according to their geochemical characteristics: A low-TiO2 sill category (TiO2 = 0.7-0.9), a relatively high-TiO2 sill category (TiO2 = 1.95-2.6) and an intermediate-TiO2 sill that displays major element compositions lying between the other two categories. Mantle normalised plots for the high-TiO2 and low-TiO2 sills display relatively uniform flat LREE trends and slightly steeper HREE slopes for high-TiO2 relative to low-TiO2 sills. The intermediate-TiO2 Morskranes Sill is LREE depleted. Mantle normalised trace elements of low-TiO2 sill samples define positive Eu and Sr anomalies, whereas high-TiO2 sill samples display negative anomalies for these same lements. Different Nb and Ta anomalies (positive versus negative) in many high-TiO2 versus low-TiO2 sill samples suggest various metasomatism of their sources prior to partial melting. The intermediate-TiO2 sill displays noticeably lower 87Sr/86Sr, 206Pb/204Pb and 208Pb/204Pb ratios relative to both the high-TiO2 and the low-TiO2 sill samples. Pb isotope compositions displayed by local contaminated basaltic lavas imply that some of these assimilated distinct crustal material from E Greenland or basement from NW Britain, while others probably assimilated only distinct E Greenland type of crustal material. A third crustal source of E Greenland or Rockall-type basement could be required in order to explain some of the range in lead isotopes displayed by the intermediate-TiO2 Morskranes Sill. Geochemical modelling suggest that Faroese high-TiO2 sills, could have formed by ~4 to 7.5% batch melting of moderately fertile lherzolites, while 16 to 21% batch melting fertile mantle sources could explain geochemical compositions of Faroese low-TiO2 sills. The intermediate-TiO2 sill samples could have formed by a range of 6 to 7% batch melting of a depleted mantle source, probably with a composition comparable to sources that gave rise to local low-TiO2 and intermediate-TiO2 host-rocks. Most Faroese sill samples probably developed outside the garnet stabilitry field and probably formed by batch melting of mantle materials comparable in composition to those reported for the sub-continental lithospheric mantle (SCLM) previously at depths of ≀ 85 km. Relative enrichments in LREE (and LILE in general), and their varying Nb and Ta anomalies point to sources affected by metasomatism

    Sequence stratigraphy, chemostratigraphy and facies analysis of Cambrian Series 2 – Series 3 boundary strata in northwestern Scotland

    Get PDF
    Globally, the Series 2 – Series 3 boundary of the Cambrian System coincides with a major carbon isotope excursion, sea-level changes and trilobite extinctions. Here we examine the sedimentology, sequence stratigraphy and carbon isotope record of this interval in the Cambrian strata (Durness Group) of NW Scotland. Carbonate carbon isotope data from the lower part of the Durness Group (Ghrudaidh Formation) show that the shallow-marine, Laurentian margin carbonates record two linked sea-level and carbon isotopic events. Whilst the carbon isotope excursions are not as pronounced as those expressed elsewhere, correlation with global records (Sauk I – Sauk II boundary and Olenellus biostratigraphic constraint) identifies them as representing the local expression of the ROECE and DICE. The upper part of the ROECE is recorded in the basal Ghrudaidh Formation whilst the DICE is seen around 30m above the base of this unit. Both carbon isotope excursions co-occur with surfaces interpreted to record regressive–transgressive events that produced amalgamated sequence boundaries and ravinement/flooding surfaces overlain by conglomerates of reworked intraclasts. The ROECE has been linked with redlichiid and olenellid trilobite extinctions, but in NW Scotland, Olenellus is found after the negative peak of the carbon isotope excursion but before sequence boundary formation

    Dating the onset and nature of the Middle Permian Emeishan large igneous province eruptions in SW China using conodont biostratigraphy and its bearing on mantle plume uplift models

    Get PDF
    The Middle Permian Emeishan large igneous province of SW China has provided the quintessential example of the phenomenon of kilometre-scale pre-eruption domal uplift associated with mantle plume impingement on the base of the lithosphere. One key line of evidence is an interpreted zone of truncation of the platform carbonates belonging to the Maokou Formation that underlies the volcanic pile. Here we test this interpretation by conodont age dating the uppermost beds of the Maokou Formation in sections from Yunnan, Sichuan, Guizhou and Guangxi provinces, which span locations from the inner part of the igneous province to several hundred kilometres beyond its margins. The results show that eruptions began in the Jinogondolella altudaensis Zone ( 263 Ma) of the Middle Capitanian Stage and greatly increased in extent and volume in the J. xuanhanensis Zone ( 262 Ma). Pre-eruption uplift was muted, and most locations within the terrain and at many locations beyond its margins witnessed platform collapse (not uplift) with deep-water facies (radiolarian cherts, submarine fans) developing in the J. altudaensis Zone. The clearest evidence for an emergence surface occurs around the margins of the province in the J. xuanhanensis Zone. This is after the initial onset of eruptions and marks either a eustatic sequence boundary or a brief pulse of tectonic uplift contemporaneous with volcanism. As with recent studies on the basal volcanic successions of the Emeishan LIP, kilometre-scale plume-related domal uplift prior to Emeishan eruptions is not supported by these data; rather a more complex interaction between plume and lithosphere with minor localized uplift and subsidence is inferred

    New early oligocene zircon U-Pb dates for the ‘Miocene’ Wenshan Basin, Yunnan, China: Biodiversity and paleoenvironment

    Get PDF
    The sedimentary basins of Yunnan, Southwest China, record detailed histories of Cenozoic paleoenvironmental change. They track regional tectonic and palaeobiological evolution, both of which are critically important for the development of modern floral diversity in southwestern China and throughout Asia more generally. However, to be useful, the sedimentary archives within the basins have to be placed within a well-constrained timeframe independent of biostratigraphy. Using high resolution U-Pb dating, we redefine the age of fossil-bearing strata in the Wenshan Basin. Regarded as Miocene for the last half century, these basin sediments encompass 30±2 and 32±1 Ma early Oligocene tuffaceous horizons, thus indicating a significantly greater antiquity than previously recognized. Together with other regional age revisions our result points to widespread Yunnan basin and orographic development as largely having taken place by the end Paleogene. This age revision provides an important new perspective on the preserved biotas and their evolution in Yunnan, and especially our understanding of the origin of Asian biodiversity which, regionally, had a near-modern composition by the early Oligocene. Crucially, this revised age evidences late Eocene-early Oligocene regional tectonism, pointing to the rise of eastern Tibet and the Hengduan Mountains before the growth of the Himalaya, and that Asia's high plant diversity has a Paleogene origin

    Sequence Stratigraphy, Chemostratigraphy and Facies Analysis of Cambrian Series 2 - Series 3 Boundary Strata in Northwestern Scotland

    Get PDF
    Globally, the Series 2 - Series 3 boundary of the Cambrian System coincides with a major carbon isotope excursion, sea-level changes and trilobite extinctions. Here we examine the sedimentology, sequence stratigraphy and carbon isotope record of this interval in the Cambrian strata (Durness Group) of NW Scotland. Carbonate carbon isotope data from the lower part of the Durness Group (Ghrudaidh Formation) show that the shallow-marine, Laurentian margin carbonates record two linked sea-level and carbon isotopic events. Whilst the carbon isotope excursions are not as pronounced as those expressed elsewhere, correlation with global records (Sauk I - Sauk II boundary and Olenellus biostratigraphic constraint) identifies them as representing the local expression of the ROECE and DICE. The upper part of the ROECE is recorded in the basal Ghrudaidh Formation whilst the DICE is seen around 30m above the base of this unit. Both carbon isotope excursions co-occur with surfaces interpreted to record regressive-transgressive events that produced amalgamated sequence boundaries and ravinement/flooding surfaces overlain by conglomerates of reworked intraclasts. The ROECE has been linked with redlichiid and olenellid trilobite extinctions, but in NW Scotland, Olenellus is found after the negative peak of the carbon isotope excursion but before sequence boundary formation

    New early oligocene zircon U-Pb dates for the ‘Miocene’ Wenshan Basin, Yunnan, China: Biodiversity and paleoenvironment

    Get PDF
    The sedimentary basins of Yunnan, Southwest China, record detailed histories of Cenozoic paleoenvironmental change. They track regional tectonic and palaeobiological evolution, both of which are critically important for the development of modern floral diversity in southwestern China and throughout Asia more generally. However, to be useful, the sedimentary archives within the basins have to be placed within a well-constrained timeframe independent of biostratigraphy. Using high resolution U-Pb dating, we redefine the age of fossil-bearing strata in the Wenshan Basin. Regarded as Miocene for the last half century, these basin sediments encompass 30±2 and 32±1 Ma early Oligocene tuffaceous horizons, thus indicating a significantly greater antiquity than previously recognized. Together with other regional age revisions our result points to widespread Yunnan basin and orographic development as largely having taken place by the end Paleogene. This age revision provides an important new perspective on the preserved biotas and their evolution in Yunnan, and especially our understanding of the origin of Asian biodiversity which, regionally, had a near-modern composition by the early Oligocene. Crucially, this revised age evidences late Eocene-early Oligocene regional tectonism, pointing to the rise of eastern Tibet and the Hengduan Mountains before the growth of the Himalaya, and that Asia's high plant diversity has a Paleogene origin

    3D Seismic reflection evidence for lower crustal intrusions beneath the Faroe–Shetland Basin, NE Atlantic Margin

    Get PDF
    Lower crustal intrusion is considered to be a common process along volcanic or magma-rich passive margins, including the NE Atlantic Margin, where it is thought to have occurred during phases of Paleogene magmatism, both prior to and during continental break-up between NW Europe and Greenland. Evidence of Paleogene magmatism is prevalent throughout the sub-basins of the Faroe–Shetland Basin as extensive lava flows and pervasive suites of igneous intrusions. However, in contrast with other areas located along the NE Atlantic Margin, no lower crustal reflectivity indicative of lower crustal intrusion has been documented beneath the Faroe–Shetland Basin. The nearest documentation of lower crustal reflectivity and interpretation of lower crustal intrusion to the Faroe–Shetland Basin is NW of the Fugloy Ridge, beneath the Norwegian Basin of the Faroese sector. Despite this, the addition of magma within the lower crust and/or at the Mohorovičić discontinuity is thought to have played a part in Paleogene uplift and the subsequent deposition of Paleocene–Eocene sequences. Advances in sub-basalt seismic acquisition and processing have made significant improvements in facilitating the imaging of deep crustal structures along the NE Atlantic Margin. This study used broadband 3D seismic reflection data to map a series of deep (c. 14–20 km depth) high-amplitude reflections that may represent igneous intrusions within the lower crust beneath the central-northern Corona Ridge. We estimate that the cumulative thicknesses of the reflections may be >5 km in places, which is consistent with published values of magmatic underplating within the region based on geochemical and petrological data. We also estimate that the total volume of lower crustal high-amplitude reflections within the 3D dataset may be >2000 km3. 2D gravity modelling of a seismic line located along the central-northern Corona Ridge supports the interpretation of lower crustal intrusions beneath this area. This study provides evidence of a potential mechanism for Paleogene uplift within the region. If uplift occurred as a result of lower crustal intrusions emplaced within the crust during the Paleogene, then we estimate that c. 300 m of uplift may have been generated within the Corona Ridge area

    New <sup>40</sup>Ar/<sup>39</sup>Ar dating of the Antrim Plateau Volcanics, Australia: clarifying an age for the eruptive phase of the Kalkarindji continental flood basalt province

    Get PDF
    The Kalkarindji flood basalt province of northern Australia erupted in the mid-Cambrian. Today the province consists of scattered volcanic and intrusive suites, the largest being the Antrim Plateau Volcanics (APV) in Northern Territory. Accurate dating of Kalkarindji has proved challenging with previous studies focused on minor volcanics and intrusive dykes in Northern Territory and Western Australia. These previously published data, corrected to the same decay constants, range from 512.8 to 509.6 ± 2.5 Ma [2σ], placing Kalkarindji in apparent synchronicity with the Cambrian Stage 4–5 biotic crisis at 510 ± 1 Ma. This study utilises 40Ar/39Ar dating of basalts from the APV to accurately date the major volcanic eruptions in this province. Results yield an age of 508.0–498.3 ± 5.5 Ma [2σ], indicating the APV is younger than the intrusives. These dates allude to a relative timing discrepancy, where intrusive activity in the North Australian Craton preceded the eruption of the APV as the last magmatic activity in the region. The determination of these largest eruptions to be later than 510 Ma, effectively disassociates Kalkarindji lavas from being a major cause of the 510 Ma biotic crisis, but cannot definitively discount any deleterious effects on the fragile Cambrian ecosystem

    Expedition 391 Preliminary Report : Walvis Ridge Hotspot: drilling Walvis Ridge, Southeast Atlantic Ocean, to test models of ridge hotspot interaction, isotopic zonation, and the hotspot reference frame

    Get PDF
    Hotspot tracks (quasilinear chains of seamounts, ridges, and other volcanic structures) provide important records of plate motions, as well as mantle geodynamics, magma flux, and mantle source compositions. The Tristan-Gough-Walvis Ridge (TGW) hotspot track, extending from the active volcanic islands of Tristan da Cunha and Gough through a province of guyots and then along Walvis Ridge to the Etendeka flood basalt province, forms one of the most prominent and complex global hotspot tracks. The TGW hotspot track displays a tight linear age progression in which ages increase from the islands to the flood basalts (covering ~135 My). Unlike Pacific tracks, which are simple chains of seamounts that are often compared to chains of pearls, the TGW track is alternately a steep-sided narrow ridge, an oceanic plateau, subparallel linear ridges and chains of seamounts, and areas of what appear to be randomly dispersed seamounts. The track displays isotopic zonation over the last ~70 My. The zonation appears near the middle of the track just before it splits into two to three chains of ridge- and guyot-type seamounts. The older ridge is also overprinted with age-progressive late-stage volcanism, which was emplaced ~30–40 My after the initial eruptions and has a distinct isotopic composition. The plan for Expedition 391 was to drill at six sites, three along Walvis Ridge and three in the seamount (guyot) province, to gather igneous rocks to better understand the formation of track edifices, the temporal and geochemical evolution of the hotspot, and the variation in paleolatitudes at which the volcanic edifices formed. After a delay of 18 days to address a shipboard outbreak of the coronavirus disease 2019 (COVID-19) virus, Expedition 391 proceeded to drill at four of the proposed sites: three sites on the eastern Walvis Ridge around Valdivia Bank, an ocean plateau within the ridge, and one site on the lower flank of a guyot in the Center track, a ridge located between the Tristan subtrack (which extends from the end of Walvis Ridge to the island of Tristan da Cunha) and the Gough subtrack (which extends from Walvis Ridge to the island of Gough). One hole was drilled at Site U1575, located on a low portion of the northeastern Walvis Ridge north of Valdivia Bank. At this location, 209.9 m of sediments and 122.4 m of igneous basement were cored. The latter comprised 10 submarine lava units consisting of pillow, lobate, sheet, and massive lava flows, the thickest of which was ~21 m. Most lavas are tholeiitic, but some alkalic basalts were recovered. A portion of the igneous succession consists of low-Ti basalts, which are unusual because they appear in the Etendeka flood basalts but have not been previously found on Walvis Ridge. Two holes were drilled at Site U1576 on the west flank of Valdivia Bank. The first hole was terminated because a bit jammed shortly after penetrating igneous basement. Hole U1576A recovered a remarkable ~380 m thick sedimentary section consisting mostly of chalk covering a nearly complete sequence from Paleocene to Late Cretaceous (Campanian). These sediments display short and long cyclic color changes that imply astronomically forced and longer term paleoenvironmental changes. The igneous basement yielded 11 submarine lava units ranging from pillows to massive flows, which have compositions varying from tholeiitic basalt to basaltic andesite, the first occurrence of this composition recovered from the TGW track. These units are separated by seven sedimentary chalk units that range in thickness from 0.1 to 11.6 m, implying a long-term interplay of sedimentation and lava eruptions. Coring at Site U1577, on the extreme eastern flank of Valdivia Bank, penetrated a 154 m thick sedimentary section, the bottom ~108 m of which is Maastrichtian–Campanian (possibly Santonian) chalk with vitric tephra layers. Igneous basement coring progressed only 39.1 m below the sediment-basalt contact, recovering three massive submarine tholeiite basalt lava flows that are 4.1, 15.5, and >19.1 m thick, respectively. Paleomagnetic data from Sites U1577 and U1576 indicate that their volcanic basements formed just before the end of the Cretaceous Normal Superchron and during Chron 33r, shortly afterward, respectively. Biostratigraphic and paleomagnetic data suggest an east–west age progression across Valdivia Bank, becoming younger westward. Site U1578, located on a Center track guyot, provided a long and varied igneous section. After coring through 184.3 m of pelagic carbonate sediments mainly consisting of Eocene and Paleocene chalk, Hole U1578A cored 302.1 m of igneous basement. Basement lavas are largely pillows but are interspersed with sheet and massive flows. Lava compositions are mostly alkalic basalts with some hawaiite. Several intervals contain abundant olivine, and some of the pillow stacks consist of basalt with remarkably high Ti content. The igneous sequence is interrupted by 10 sedimentary interbeds consisting of chalk and volcaniclastics and ranging in thickness from 0.46 to 10.19 m. Paleomagnetic data display a change in basement magnetic polarity ~100 m above the base of the hole. Combining magnetic stratigraphy with biostratigraphic data, the igneous section is inferred to span >1 My. Abundant glass from pillow lava margins was recovered at Sites U1575, U1576, and U1578. Although the igneous penetration was only two-thirds of the planned amount, drilling during Expedition 391 obtained samples that clearly will lead to a deeper understanding of the evolution of the Tristan-Gough hotspot and its track. Relatively fresh basalts with good recovery will provide ample samples for geochemical, geochronologic, and paleomagnetic studies. Good recovery of Late Cretaceous and early Cenozoic chalk successions provides samples for paleoenvironmental study
    • 

    corecore