509 research outputs found

    A Unified Description of Cuprate and Iron Arsenide Superconductors

    Full text link
    We propose a unified description of cuprate and iron-based superconductivity. Consistency with magnetic structure inferred from neutron scattering implies significant constraints on the symmetry of the pairing gap for the iron-based superconductors. We find that this unification requires the orbital pairing formfactors for the iron arsenides to differ fundamentally from those for cuprates at the microscopic level.Comment: 12 pages, 10 figures, 2 table

    The effectiveness of pre-contoured titanium alloy rods in inducing thoracic kyphosis after sequential spinal releases in an in vitro biomechanical model

    Get PDF
    PurposeEvaluate the ability of pre-contoured rods to induce thoracic kyphosis (TK) in human cadaveric spines and determine the effectiveness of sequential surgical adolescent idiopathic scoliosis (AIS) release procedures.MethodsSix thoracolumbar (T3-L2) spine specimens were instrumented with pedicle screws bilaterally (T4–T12). Over correction using pre-contoured rods was performed for intact condition and Cobb angle was measured. Rod radius of curvature (RoC) was measured pre- and post-reduction. The process was repeated following sequential release procedures of (1) interspinous and supraspinous ligaments (ISL); (2) ligamentum flavum; (3) Ponte osteotomy; (4) posterior longitudinal ligament (PLL); and (5) transforaminal discectomy. Cobb measurements determined the effective contribution of release on TK and RoC data displayed effects of reduction to the rods.ResultsThe intact TK (T4–12) was 38.0° and increased to 51.7° with rod reduction and over correction. Each release resulted in 5°–7°of additional kyphosis; the largest releases were ISL and PLL. All releases resulted in significant increases in kyphosis compared to intact with rod reduction and over correction. Regionally, kyphosis increased ∼2° for each region following successive releases. Comparing RoC before and after reduction showed significant 6° loss in rod curvature independent of release type.ConclusionKyphosis increased in the thoracic spine using pre-contoured and over corrected rods. Subsequent posterior releases provided a substantial, meaningful clinical change in the ability to induce additional kyphosis. Regardless of the number of releases, the ability of the rods to induce and over correct kyphosis was reduced following reduction

    Agent based modelling helps in understanding the rules by which fibroblasts support keratinocyte colony formation

    Get PDF
    Background: Autologous keratincoytes are routinely expanded using irradiated mouse fibroblasts and bovine serum for clinical use. With growing concerns about the safety of these xenobiotic materials, it is desirable to culture keratinocytes in media without animal derived products. An improved understanding of epithelial/mesenchymal interactions could assist in this. Methodology/Principal Findings: A keratincyte/fibroblast o-culture model was developed by extending an agent-based keratinocyte colony formation model to include the response of keratinocytes to both fibroblasts and serum. The model was validated by comparison of the in virtuo and in vitro multicellular behaviour of keratinocytes and fibroblasts in single and co-culture in Greens medium. To test the robustness of the model, several properties of the fibroblasts were changed to investigate their influence on the multicellular morphogenesis of keratinocyes and fibroblasts. The model was then used to generate hypotheses to explore the interactions of both proliferative and growth arrested fibroblasts with keratinocytes. The key predictions arising from the model which were confirmed by in vitro experiments were that 1) the ratio of fibroblasts to keratinocytes would critically influence keratinocyte colony expansion, 2) this ratio needed to be optimum at the beginning of the co-culture, 3) proliferative fibroblasts would be more effective than irradiated cells in expanding keratinocytes and 4) in the presence of an adequate number of fibroblasts, keratinocyte expansion would be independent of serum. Conclusions: A closely associated computational and biological approach is a powerful tool for understanding complex biological systems such as the interactions between keratinocytes and fibroblasts. The key outcome of this study is the finding that the early addition of a critical ratio of proliferative fibroblasts can give rapid keratinocyte expansion without the use of irradiated mouse fibroblasts and bovine serum

    Thermal Conductivity across the Phase Diagram of Cuprates: Low-Energy Quasiparticles and Doping Dependence of the Superconducting Gap

    Full text link
    Heat transport in the cuprate superconductors YBa2_2Cu3_3Oy_{y} and La2x_{2-x}Srx_xCuO4_4 was measured at low temperatures as a function of doping. A residual linear term kappa_{0}/T is observed throughout the superconducting region and it decreases steadily as the Mott insulator is approached from the overdoped regime. The low-energy quasiparticle gap extracted from kappa_{0}/T is seen to scale closely with the pseudogap. The ubiquitous presence of nodes and the tracking of the pseudogap shows that the overall gap remains of the pure d-wave form throughout the phase diagram, which excludes the possibility of a complex component (ix) appearing at a putative quantum phase transition and argues against a non-superconducting origin to the pseudogap. A comparison with superfluid density measurements reveals that the quasiparticle effective charge is weakly dependent on doping and close to unity.Comment: 12 pages, 9 figure

    Exploring hypotheses of the actions of TGF-beta 1 in epidermal wound healing using a 3D computational multiscale model of the human epidermis

    Get PDF
    In vivo and in vitro studies give a paradoxical picture of the actions of the key regulatory factor TGF-beta 1 in epidermal wound healing with it stimulating migration of keratinocytes but also inhibiting their proliferation. To try to reconcile these into an easily visualized 3D model of wound healing amenable for experimentation by cell biologists, a multiscale model of the formation of a 3D skin epithelium was established with TGF-beta 1 literature-derived rule sets and equations embedded within it. At the cellular level, an agent-based bottom-up model that focuses on individual interacting units ( keratinocytes) was used. This was based on literature-derived rules governing keratinocyte behavior and keratinocyte/ECM interactions. The selection of these rule sets is described in detail in this paper. The agent-based model was then linked with a subcellular model of TGF-beta 1 production and its action on keratinocytes simulated with a complex pathway simulator. This multiscale model can be run at a cellular level only or at a combined cellular/subcellular level. It was then initially challenged ( by wounding) to investigate the behavior of keratinocytes in wound healing at the cellular level. To investigate the possible actions of TGF-beta 1, several hypotheses were then explored by deliberately manipulating some of these rule sets at subcellular levels. This exercise readily eliminated some hypotheses and identified a sequence of spatial-temporal actions of TGF-beta 1 for normal successful wound healing in an easy-to-follow 3D model. We suggest this multiscale model offers a valuable, easy-to-visualize aid to our understanding of the actions of this key regulator in wound healing, and provides a model that can now be used to explore pathologies of wound healing

    Single-Particle and Collective Motion for Proton-Rich Nuclei on the Astrophysical rp-Process Path

    Get PDF
    Based on available experimental data, a new set of Nilsson parameters is proposed for proton-rich nuclei with proton or neutron numbers 28N4028\leq N\leq 40. The resulting single-particle spectra are compared with those from relativistic and non-relativistic mean field theories. Collective excitations in some even--even proton-rich nuclei in the upper pfpf shell are investigated using the Projected Shell Model with the new Nilsson basis. It is found that the regular bands are sharply disturbed by band crossings involving 1g9/21g_{9/2} neutrons and protons. Physical quantities for exploring the nature of the band disturbance and the role of the 1g9/21g_{9/2} single-particle are predicted, which may be tested by new experiments with radioactive beams.Comment: 4 pages, 3 figures, accepted by Phys. Rev. C, Rapid Communicatio

    The Milky Way Tomography With SDSS. III. Stellar Kinematics

    Get PDF
    We study Milky Way kinematics using a sample of 18.8 million main-sequence stars with r 20 degrees). We find that in the region defined by 1 kpc < Z < 5 kpc and 3 kpc < R < 13 kpc, the rotational velocity for disk stars smoothly decreases, and all three components of the velocity dispersion increase, with distance from the Galactic plane. In contrast, the velocity ellipsoid for halo stars is aligned with a spherical coordinate system and appears to be spatially invariant within the probed volume. The velocity distribution of nearby (Z < 1 kpc) K/M stars is complex, and cannot be described by a standard Schwarzschild ellipsoid. For stars in a distance-limited subsample of stars (< 100 pc), we detect a multi-modal velocity distribution consistent with that seen by HIPPARCOS. This strong non-Gaussianity significantly affects the measurements of the velocity-ellipsoid tilt and vertex deviation when using the Schwarzschild approximation. We develop and test a simple descriptive model for the overall kinematic behavior that captures these features over most of the probed volume, and can be used to search for substructure in kinematic and metallicity space. We use this model to predict further improvements in kinematic mapping of the Galaxy expected from Gaia and the Large Synoptic Survey Telescope.NSF AST-615991, AST-0707901, AST-0551161, AST-02-38683, AST-06-07634, AST-0807444, PHY05-51164NASA NAG5-13057, NAG5-13147, NNXO-8AH83GPhysics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA) PHY 08-22648U.S. National Science FoundationMarie Curie Research Training Network ELSA (European Leadership in Space Astrometry) MRTN-CT-2006-033481Fermi Research Alliance, LLC, United States Department of Energy DE-AC02-07CH11359Alfred P. Sloan FoundationParticipating InstitutionsJapanese MonbukagakushoMax Planck SocietyHigher Education Funding Council for EnglandMcDonald Observator

    The Advanced Technology Microwave Sounder (ATMS): A New Operational Sensor Series

    Get PDF
    ATMS is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. ATMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first ATMS was launched October 28, 2011 on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite. Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction (NWP) models; and ATMS, when combined with the Cross-track Infrared Sounder (CrIS), forms the Cross-track Infrared and Microwave Sounding Suite (CrIMSS). The microwave soundings help meet NWP sounding requirements under cloudy sky conditions and provide key profile information near the surfac

    The Milky Way Tomography with SDSS: III. Stellar Kinematics

    Full text link
    We study Milky Way kinematics using a sample of 18.8 million main-sequence stars with r<20 and proper-motion measurements derived from SDSS and POSS astrometry, including ~170,000 stars with radial-velocity measurements from the SDSS spectroscopic survey. Distances to stars are determined using a photometric parallax relation, covering a distance range from ~100 pc to 10 kpc over a quarter of the sky at high Galactic latitudes (|b|>20 degrees). We find that in the region defined by 1 kpc <Z< 5 kpc and 3 kpc <R< 13 kpc, the rotational velocity for disk stars smoothly decreases, and all three components of the velocity dispersion increase, with distance from the Galactic plane. In contrast, the velocity ellipsoid for halo stars is aligned with a spherical coordinate system and appears to be spatially invariant within the probed volume. The velocity distribution of nearby (Z<1Z<1 kpc) K/M stars is complex, and cannot be described by a standard Schwarzschild ellipsoid. For stars in a distance-limited subsample of stars (<100 pc), we detect a multimodal velocity distribution consistent with that seen by HIPPARCOS. This strong non-Gaussianity significantly affects the measurements of the velocity ellipsoid tilt and vertex deviation when using the Schwarzschild approximation. We develop and test a simple descriptive model for the overall kinematic behavior that captures these features over most of the probed volume, and can be used to search for substructure in kinematic and metallicity space. We use this model to predict further improvements in kinematic mapping of the Galaxy expected from Gaia and LSST.Comment: 90 pages, 26 figures, submitted to Ap
    corecore