78 research outputs found

    Les fouilles du site d’Aguelmam Tghalouine 3 (Moyen-Atlas central, commune de Timahdit)

    Get PDF

    Knowledge, Attitude and Awareness of Hepatitis B Vaccination in Patients Visiting Jinnah Postgraduate Medical Center, Karachi

    Get PDF
    Not Availabl

    Super-resolution mapping

    Get PDF
    Super-resolution mapping is becoming an increasing important technique in remote sensing for land cover mapping at a sub-pixel scale from coarse spatial resolution imagery. The potential of this technique could increase the value of the low cost coarse spatial resolution imagery. Among many types of land cover patches that can be represented by the super-resolution mapping, the prediction of patches smaller than an image pixel is one of the most difficult. This is because of the lack of information on the existence and spatial extend of the small land cover patches. Another difficult problem is to represent the location of small patches accurately. This thesis focuses on the potential of super-resolution mapping for accurate land cover mapping, with particular emphasis on the mapping of small patches. Popular super-resolution mapping techniques such as pixel swapping and the Hopfield neural network are used as well as a new method proposed. Using a Hopfield neural network (HNN) for super-resolution mapping, the best parameters and configuration to represent land cover patches of different sizes, shapes and mosaics are investigated. In addition, it also shown how a fusion of time series coarse spatial resolution imagery, such as daily MODIS 250 m images, can aid the determination of small land cover patch locations, thus reducing the spatial variability of the representation of such patches. Results of the improved HNN using a time series images are evaluated in a series of assessments, and demonstrated to be superior in terms of mapping accuracy than that of the standard techniques. A novel super-resolution mapping technique based on halftoning concept is presented as an alternative solution for the super-resolution mapping. This new technique is able to represent more land cover patches than the standard techniques

    Super-resolution mapping

    Get PDF
    Super-resolution mapping is becoming an increasing important technique in remote sensing for land cover mapping at a sub-pixel scale from coarse spatial resolution imagery. The potential of this technique could increase the value of the low cost coarse spatial resolution imagery. Among many types of land cover patches that can be represented by the super-resolution mapping, the prediction of patches smaller than an image pixel is one of the most difficult. This is because of the lack of information on the existence and spatial extend of the small land cover patches. Another difficult problem is to represent the location of small patches accurately. This thesis focuses on the potential of super-resolution mapping for accurate land cover mapping, with particular emphasis on the mapping of small patches. Popular super-resolution mapping techniques such as pixel swapping and the Hopfield neural network are used as well as a new method proposed. Using a Hopfield neural network (HNN) for super-resolution mapping, the best parameters and configuration to represent land cover patches of different sizes, shapes and mosaics are investigated. In addition, it also shown how a fusion of time series coarse spatial resolution imagery, such as daily MODIS 250 m images, can aid the determination of small land cover patch locations, thus reducing the spatial variability of the representation of such patches. Results of the improved HNN using a time series images are evaluated in a series of assessments, and demonstrated to be superior in terms of mapping accuracy than that of the standard techniques. A novel super-resolution mapping technique based on halftoning concept is presented as an alternative solution for the super-resolution mapping. This new technique is able to represent more land cover patches than the standard techniques

    The effect of doping methods on electrical properties and micromorphology of polysilicon gate electrode in submicron CMOS devices

    No full text
    Two doping methods for introducing phosphorus atoms into polysilicon to form a gate electrode for 0.5 mm CMOS were investigated. These methods were ion implantation and the ”in-situ” one (it is also known as thermal diffusion). For the in-situ method, the concentration of 1.8.10²⁰cm-³ for Si₂H₆ and phosphane (PH3) were used, in the course of ion implantation applying two different doses: 2.0.10¹⁶ and 3.10¹⁶cm-² at 40 keV. The micromorphology of the polysilicon surface was studied using the atomic force microscopy (AFM). The polysilicon thickness obtained via the in-situ method ranged between 12.35 and 26.08 nm, with an average value thickness of 18.0 nm, and its sheet resistance value was 21±1 ohm/square. As for the ion implantation method, at the lower doses the thickness ranged at about 12.00 upto 46.0 nm with an average value of 24.0 nm, and its sheet resistance values were of 36±13 and 45±21 ohm/square, respectively. At the higher doses, the thickness varied from 12.16 to 47.84 nm with an average meaning 23.96 nm, and its sheet resistance value was between 25 to 40 ohm/square. Therefore, polysilicon doped by the in-situ method has smoother and thinner surface and possesses better electrical properties

    Tooth segmentation using dynamic programming-gradient inverse coefficient of variation

    Get PDF
    Teeth provide meaningful clues of an individual. The growth of the teeth is correlated with the individual age. This correlation is widely used to estimate age of an individual in applications like conducting forensic odontology, immigration, and differentiating juveniles and adolescents. Current forensic dentistry largely depends on laborious investigation process that is performed manually and can be influenced by human factors like fatigue and inconsistency. Digital panoramic radiograph dental images allow noninvasive and automatic investigation to be performed. This paper presents analyses on third molar tooth segmentation for the population in Malaysia, ranging from persons age of 5 years old to 23 years old. Two segmentation techniques: gradient inverse coefficient of variation with dynamic programming (DP-GICOV) and Chan-Vese (CV) were employed and compared. Results demonstrated that the accuracy of DP-GICOV and CV were 95.3%, and 81.6%, respectively

    Development of driving assistant system for smart vehicle from series of image sequence

    Get PDF
    An autonomous intelligent vehicle system that can interpret traffics situation, provides driving assistance and capable of avoiding collisions can significantly increased driving safety. Such a vehicle system will have to perform several functionalities. In this work, a visual based sensor is used to acquire information by placing a web-camera at the dashboard of a moving car and directed outward in a way to have a similar view with a real driver. The camera captures image sequences where every frame of image provides information pertaining to road and traffic situations

    The Early and Middle Holocene Lithic Industries of Ifri n’Etsedda (Eastern Rif, Morocco)

    Get PDF
    Archaeological research has been carried out in the Eastern Rif (Morocco) since 1995 by a collaborative Moroccan-German research team. A major topic of the project is the transition from hunting-gathering to food production and related cultural developments. Innovations such as pottery and domesticated species appeared around 7.6 ka calBP. The cultivation of cereals and pulses is evident at that time. Two of the most important sites in the area are Ifri Oudadane and Ifri n’Etsedda. Both provide Epipaleolithic as well as Neolithic deposits. While innovative technologies such as pottery production and cultivation indicate external influences, lithic artifacts demonstrate local technological and behavioral traditions. Therefore, the study of lithic industries is crucial to understanding the nature of cultural continuity and discontinuity between the hunting-gathering and agricultural populations in the Eastern Rif. Ifri n’Etsedda provides two distinct Epipaleolithic deposits and thus offers the opportunity to study possible changes throughout the Epipalaeolithic and relationship to the later Early Neolithic (ENC). In combination with the earlier phases of Early Neolithic assemblages (ENA, ENB) at Ifri Oudadane, we are now in a better position to understand the development of early-to-mid Holocene lithic technology in the Eastern Rif. We show that the lithic record of Ifri n’Etsedda does not indicate any significant change in raw material supply, blank production, and tool distribution from the Early Epipaleolithic to the Early Neolithic B. Therefore, we argue for behavioral continuity from the Epipaleolithic to the Neolithic period. In contrast, the assemblages of the Early Neolithic C show changes in lithic technology
    corecore