19 research outputs found

    A Type System for Privacy Properties (Technical Report)

    Full text link
    Mature push button tools have emerged for checking trace properties (e.g. secrecy or authentication) of security protocols. The case of indistinguishability-based privacy properties (e.g. ballot privacy or anonymity) is more complex and constitutes an active research topic with several recent propositions of techniques and tools. We explore a novel approach based on type systems and provide a (sound) type system for proving equivalence of protocols, for a bounded or an unbounded number of sessions. The resulting prototype implementation has been tested on various protocols of the literature. It provides a significant speed-up (by orders of magnitude) compared to tools for a bounded number of sessions and complements in terms of expressiveness other state-of-the-art tools, such as ProVerif and Tamarin: e.g., we show that our analysis technique is the first one to handle a faithful encoding of the Helios e-voting protocol in the context of an untrusted ballot box

    Structural characterization of Miz-1 in the context of the transcriptional repression caused by the c-Myc/Miz-1 complex

    No full text
    RĂ©sumĂ© : c-Myc est un facteur de transcription (FT) dont les niveaux cellulaires sont dĂ©rĂ©gulĂ©s dans la majoritĂ© des cancers chez l’homme. En hĂ©tĂ©rodimĂšre avec son partenaire obligatoire Max, c-Myc lie prĂ©fĂ©rentiellement les sĂ©quences E-Box (CACGTG) et cause l’expression de gĂšnes impliquĂ©s dans la biosynthĂšse des protĂ©ines et des ARNs, dans le mĂ©tabolisme et dans la prolifĂ©ration cellulaire. Il est maintenant bien connu que c-Myc exerce aussi son potentiel mitogĂšne en liant et inhibant diffĂ©rents FTs impliquĂ©s dans l’expression de gĂšnes cytostatiques. Entre autres, c-Myc est en mesure d’inhiber Miz-1, un FT comportant 13 doigts de zinc de type Cys2-His2 (ZFs) impliquĂ© dans l’expression de plusieurs gĂšnes rĂ©gulateurs du cycle cellulaire comprenant les inhibiteurs de CDK p15[indice supĂ©rieur INK4], p21[indice supĂ©rieur CIP1] et p57[indice supĂ©rieur KIP2]. Plus rĂ©cemment, il fut dĂ©montrĂ© qu’en contrepartie, Miz-1 est aussi en mesure de renverser les fonctions activatrices de c-Myc et de prĂ©venir la prolifĂ©ration de cellules cancĂ©reuses dĂ©pendantes de c-Myc. Ces diffĂ©rentes observations ont menĂ© Ă  la suggestion de l’hypothĂšse intĂ©ressante que la balance des niveaux de Miz-1 et c-Myc pourrait dicter le destin de la cellule et a permis d’établir Miz-1 comme nouvelle cible potentielle pour le dĂ©veloppement d’agents anti-cancĂ©reux. MalgrĂ© le fait que ces deux protĂ©ines semblent centrales Ă  la rĂ©gulation du cycle cellulaire, les mĂ©canismes molĂ©culaires leur permettant de s’inhiber mutuellement ainsi que les dĂ©terminants molĂ©culaires permettant leur association spĂ©cifique demeurent assez peu documentĂ©s pour le moment. De plus, la biologie structurale de Miz-1 demeure Ă  ĂȘtre explorĂ©e puisque qu’aucune structure de ses 13 ZFs, essentiels Ă  sa liaison Ă  l’ADN, n’a Ă©tĂ© dĂ©terminĂ©e pour l’instant. Les travaux rĂ©alisĂ©s dans le cadre cette thĂšse visent la caractĂ©risation structurale et biophysique de Miz-1 dans le contexte de la rĂ©pression gĂ©nique causĂ©e par le complexe c-Myc/Miz-1. Nous prĂ©sentons des rĂ©sultats d’éxpĂ©riences in vitro dĂ©montrant que Miz-1 interagit avec c-Myc via un domaine contenu entre ses ZFs 12 et 13. De plus, nous dĂ©montrons que Miz-1 et Max sont en compĂ©tition pour la liaison de c-Myc. Ces rĂ©sultats suggĂšrent pour la permiĂšre fois que Miz-1 inhibe les activitĂ©s de c-Myc en prĂ©venant son interaction avec son partenaire obligatoire Max. De plus, ils laissent prĂ©sager que que Miz-1 pourrait servir de rĂ©fĂ©rence pour le dĂ©veloppement d’inhibiteurs peptidiques de c-Myc. Finalement, nous avons rĂ©alisĂ© la caractĂ©risation structurale et dynamique des ZFs 1 Ă  4 et 8 Ă  10 de Miz-1 et avons Ă©valuĂ© leur potentiel de liaison Ă  l’ADN. Les rĂ©sultats obtenus, couplĂ©s Ă  des analyses bio-informatiques, nous permettent de suggĂ©rer un modĂšle dĂ©taillĂ© pour la liaison spĂ©cifique de Miz-1 Ă  son ADN consensus rĂ©cemment identifiĂ©.Abstract : c-Myc is a transcription factor (TF) deregulated in the majority of human cancers. In heterodimer with its obligatory partner Max, c-Myc preferentially binds E-Box DNA sequences (CACGTG) and activates genes involved in protein and RNA biogenesis, metabolism and cell proliferation. It is now well established that c-Myc can also bind and inhibit some TFs involved in the expression of cytostatic genes to exert its mitogenic potential. Among those, the inhibition of Miz-1 by c-Myc is the best characterized case. Miz-1 is a TF containing 13 Cys2-His2 zinc fingers (ZFs) that is involved in the expression of many cell cycle regulators such as the CDK inhibitors p15[superscript INK4], p21[superscript CIP1] et p57[superscript KIP2]. More recently, it was shown that, on the other hand, Miz-1 is also able to reverse the transcriptional activator functions of c-Myc and to prevent the proliferation of c-Myc-dependent cancer cells. These observations led to the interesting hypothesis that the balance of c-Myc and Miz-1 levels could determine cell fate and establish Miz-1 as an interesting target for the design of novel cancer drugs. Although those proteins seem central to the regulation of the cell cycle, the molecular mechanisms allowing them to inhibit each other and the molecular determinants allowing their specific association remain poorly understood. Moreover, the structural biology of Miz-1 remains to be explored considering that none of its 13 ZF structures, essential to its DNA binding, have been determined so far. The work presented in this thesis aim at characterizing the structural biology of Miz-1 in the context of the transcriptional repression caused by the c-Myc/Miz-1 complex. We present results from in vitro experiments showing that a domain comprised between the 12th and 13th ZFs of Miz-1 is involved in its binding to c-Myc. Moreover, we demonstrate that Miz-1 and Max compete to engage c-Myc. These results suggest for the first time that Miz-1 inhibits c-Myc by a sequestration mechanism preventing its association with its obligatory partner Max. Moreover, they argue that Miz-1 could serve as a reference for the development of c-Myc specific peptide inhibitors as a new approach for cancer drug design. Finally, we realized the structural and dynamical characterization of Miz-1 ZFs 1 to 4 and 8 to 10 and the characterization of their DNA binding potential. The results collected, coupled to bioinformatics analysis, allowed us to suggest a model for Miz-1 specific binding to its consensus DNA sequence recently unveiled

    Structural characterization of Miz-1 in the context of the transcriptional repression caused by the c-Myc/Miz-1 complex

    No full text
    RĂ©sumĂ© : c-Myc est un facteur de transcription (FT) dont les niveaux cellulaires sont dĂ©rĂ©gulĂ©s dans la majoritĂ© des cancers chez l’homme. En hĂ©tĂ©rodimĂšre avec son partenaire obligatoire Max, c-Myc lie prĂ©fĂ©rentiellement les sĂ©quences E-Box (CACGTG) et cause l’expression de gĂšnes impliquĂ©s dans la biosynthĂšse des protĂ©ines et des ARNs, dans le mĂ©tabolisme et dans la prolifĂ©ration cellulaire. Il est maintenant bien connu que c-Myc exerce aussi son potentiel mitogĂšne en liant et inhibant diffĂ©rents FTs impliquĂ©s dans l’expression de gĂšnes cytostatiques. Entre autres, c-Myc est en mesure d’inhiber Miz-1, un FT comportant 13 doigts de zinc de type Cys2-His2 (ZFs) impliquĂ© dans l’expression de plusieurs gĂšnes rĂ©gulateurs du cycle cellulaire comprenant les inhibiteurs de CDK p15[indice supĂ©rieur INK4], p21[indice supĂ©rieur CIP1] et p57[indice supĂ©rieur KIP2]. Plus rĂ©cemment, il fut dĂ©montrĂ© qu’en contrepartie, Miz-1 est aussi en mesure de renverser les fonctions activatrices de c-Myc et de prĂ©venir la prolifĂ©ration de cellules cancĂ©reuses dĂ©pendantes de c-Myc. Ces diffĂ©rentes observations ont menĂ© Ă  la suggestion de l’hypothĂšse intĂ©ressante que la balance des niveaux de Miz-1 et c-Myc pourrait dicter le destin de la cellule et a permis d’établir Miz-1 comme nouvelle cible potentielle pour le dĂ©veloppement d’agents anti-cancĂ©reux. MalgrĂ© le fait que ces deux protĂ©ines semblent centrales Ă  la rĂ©gulation du cycle cellulaire, les mĂ©canismes molĂ©culaires leur permettant de s’inhiber mutuellement ainsi que les dĂ©terminants molĂ©culaires permettant leur association spĂ©cifique demeurent assez peu documentĂ©s pour le moment. De plus, la biologie structurale de Miz-1 demeure Ă  ĂȘtre explorĂ©e puisque qu’aucune structure de ses 13 ZFs, essentiels Ă  sa liaison Ă  l’ADN, n’a Ă©tĂ© dĂ©terminĂ©e pour l’instant. Les travaux rĂ©alisĂ©s dans le cadre cette thĂšse visent la caractĂ©risation structurale et biophysique de Miz-1 dans le contexte de la rĂ©pression gĂ©nique causĂ©e par le complexe c-Myc/Miz-1. Nous prĂ©sentons des rĂ©sultats d’éxpĂ©riences in vitro dĂ©montrant que Miz-1 interagit avec c-Myc via un domaine contenu entre ses ZFs 12 et 13. De plus, nous dĂ©montrons que Miz-1 et Max sont en compĂ©tition pour la liaison de c-Myc. Ces rĂ©sultats suggĂšrent pour la permiĂšre fois que Miz-1 inhibe les activitĂ©s de c-Myc en prĂ©venant son interaction avec son partenaire obligatoire Max. De plus, ils laissent prĂ©sager que que Miz-1 pourrait servir de rĂ©fĂ©rence pour le dĂ©veloppement d’inhibiteurs peptidiques de c-Myc. Finalement, nous avons rĂ©alisĂ© la caractĂ©risation structurale et dynamique des ZFs 1 Ă  4 et 8 Ă  10 de Miz-1 et avons Ă©valuĂ© leur potentiel de liaison Ă  l’ADN. Les rĂ©sultats obtenus, couplĂ©s Ă  des analyses bio-informatiques, nous permettent de suggĂ©rer un modĂšle dĂ©taillĂ© pour la liaison spĂ©cifique de Miz-1 Ă  son ADN consensus rĂ©cemment identifiĂ©.Abstract : c-Myc is a transcription factor (TF) deregulated in the majority of human cancers. In heterodimer with its obligatory partner Max, c-Myc preferentially binds E-Box DNA sequences (CACGTG) and activates genes involved in protein and RNA biogenesis, metabolism and cell proliferation. It is now well established that c-Myc can also bind and inhibit some TFs involved in the expression of cytostatic genes to exert its mitogenic potential. Among those, the inhibition of Miz-1 by c-Myc is the best characterized case. Miz-1 is a TF containing 13 Cys2-His2 zinc fingers (ZFs) that is involved in the expression of many cell cycle regulators such as the CDK inhibitors p15[superscript INK4], p21[superscript CIP1] et p57[superscript KIP2]. More recently, it was shown that, on the other hand, Miz-1 is also able to reverse the transcriptional activator functions of c-Myc and to prevent the proliferation of c-Myc-dependent cancer cells. These observations led to the interesting hypothesis that the balance of c-Myc and Miz-1 levels could determine cell fate and establish Miz-1 as an interesting target for the design of novel cancer drugs. Although those proteins seem central to the regulation of the cell cycle, the molecular mechanisms allowing them to inhibit each other and the molecular determinants allowing their specific association remain poorly understood. Moreover, the structural biology of Miz-1 remains to be explored considering that none of its 13 ZF structures, essential to its DNA binding, have been determined so far. The work presented in this thesis aim at characterizing the structural biology of Miz-1 in the context of the transcriptional repression caused by the c-Myc/Miz-1 complex. We present results from in vitro experiments showing that a domain comprised between the 12th and 13th ZFs of Miz-1 is involved in its binding to c-Myc. Moreover, we demonstrate that Miz-1 and Max compete to engage c-Myc. These results suggest for the first time that Miz-1 inhibits c-Myc by a sequestration mechanism preventing its association with its obligatory partner Max. Moreover, they argue that Miz-1 could serve as a reference for the development of c-Myc specific peptide inhibitors as a new approach for cancer drug design. Finally, we realized the structural and dynamical characterization of Miz-1 ZFs 1 to 4 and 8 to 10 and the characterization of their DNA binding potential. The results collected, coupled to bioinformatics analysis, allowed us to suggest a model for Miz-1 specific binding to its consensus DNA sequence recently unveiled

    Biophysical characterization of the b-HLH-LZ of ΔMax, an alternatively spliced isoform of Max found in tumor cells: Towards the validation of a tumor suppressor role for the Max homodimers

    Get PDF
    <div><p>It is classically recognized that the physiological and oncogenic functions of Myc proteins depend on specific DNA binding enabled by the dimerization of its C-terminal basic-region-Helix-Loop-Helix-Leucine Zipper (b-HLH-LZ) domain with that of Max. However, a new paradigm is emerging, where the binding of the c-Myc/Max heterodimer to non-specific sequences in enhancers and promoters drives the transcription of genes involved in diverse oncogenic programs. Importantly, Max can form a stable homodimer even in the presence of c-Myc and bind DNA (specific and non-specific) with comparable affinity to the c-Myc/Max heterodimer. Intriguingly, alterations in the Max gene by germline and somatic mutations or changes in the gene product by alternative splicing (e.g. ΔMax) were recently associated with pheochromocytoma and glioblastoma, respectively. This has led to the proposition that Max is, by itself, a tumor suppressor. However, the actual mechanism through which it exerts such an activity remains to be elucidated. Here, we show that contrary to the WT motif, the b-HLH-LZ of ΔMax does not homodimerize in the absence of DNA. In addition, although ΔMax can still bind the E-box sequence as a homodimer, it cannot bind non-specific DNA in that form, while it can heterodimerize with c-Myc and bind E-box and non-specific DNA as a heterodimer with high affinity. Taken together, our results suggest that the WT Max homodimer is important for attenuating the binding of c-Myc to specific and non-specific DNA, whereas ΔMax is unable to do so. Conversely, the splicing of Max into ΔMax could provoke an increase in overall chromatin bound c-Myc. According to the new emerging paradigm, the splicing event and the stark reduction in homodimer stability and DNA binding should promote tumorigenesis impairing the tumor suppressor activity of the WT homodimer of Max.</p></div
    corecore