96 research outputs found

    Double knockdown of α1,6-fucosyltransferase (FUT8) and GDP-mannose 4,6-dehydratase (GMD) in antibody-producing cells: a new strategy for generating fully non-fucosylated therapeutic antibodies with enhanced ADCC

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antibody-dependent cellular cytotoxicity (ADCC) is greatly enhanced by the absence of the core fucose of oligosaccharides attached to the Fc, and is closely related to the clinical efficacy of anticancer activity in humans <it>in vivo</it>. Unfortunately, all licensed therapeutic antibodies and almost all currently-developed therapeutic antibodies are heavily fucosylated and fail to optimize ADCC, which leads to a large dose requirement at a very high cost for the administration of antibody therapy to cancer patients. In this study, we explored the possibility of converting already-established antibody-producing cells to cells that produce antibodies fully lacking core fucosylation in order to facilitate the rapid development of next-generation therapeutic antibodies.</p> <p>Results</p> <p>Firstly, loss-of-function analyses using small interfering RNAs (siRNAs) against the three key genes involved in oligosaccharide fucose modification, i.e. α1,6-fucosyltransferase (<it>FUT8</it>), GDP-mannose 4,6-dehydratase (<it>GMD</it>), and GDP-fucose transporter (<it>GFT</it>), revealed that single-gene knockdown of each target was insufficient to completely defucosylate the products in antibody-producing cells, even though the most effective siRNA (>90% depression of the target mRNA) was employed. Interestingly, beyond our expectations, synergistic effects of <it>FUT8 </it>and <it>GMD </it>siRNAs on the reduction in fucosylation were observed, but not when these were used in combination with <it>GFT </it>siRNA. Secondly, we successfully developed an effective short hairpin siRNA tandem expression vector that facilitated the double knockdown of <it>FUT8 </it>and <it>GMD</it>, and we converted antibody-producing Chinese hamster ovary (CHO) cells to fully non-fucosylated antibody producers within two months, and with high converting frequency. Finally, the stable manufacture of fully non-fucosylated antibodies with enhanced ADCC was confirmed using the converted cells in serum-free fed-batch culture.</p> <p>Conclusion</p> <p>Our results suggest that FUT8 and GMD collaborate synergistically in the process of intracellular oligosaccharide fucosylation. We also demonstrated that double knockdown of <it>FUT8 </it>and <it>GMD </it>in antibody-producing cells could serve as a new strategy for producing next-generation therapeutic antibodies fully lacking core fucosylation and with enhanced ADCC. This approach offers tremendous cost- and time-sparing advantages for the development of next-generation therapeutic antibodies.</p

    Office management of lost intrauterine devices either with or without strings

    Get PDF
    AbstractObjectiveTo evaluate the efficacy of our method for retrieval of lost intrauterine devices (IUDs) either with or without strings in an office-based setting.MethodsA total of 38 women underwent retrieval of lost IUD. After preevaluation with ultrasonography and hysteroscopy, a Lin polyp grasper was used to remove the IUD under ultrasound monitoring without using a simultaneous hysteroscopy.ResultsOut of 38 women, 12 (31.6%) had IUD insertion for 10–19 years, whereas in another 12 women (31.6%), the duration was 20–40 years. Participants were divided into two groups: (1) premenopausal group (n = 21). The removed IUDs were 11 Chinese IUDs, seven FD-1 IUDs, one Yusei ring IUD, one Lippe loop IUD, and one Mirena IUD; and (2) postmenopausal group (n = 17). The removed IUDs were five soft type Ota ring IUDs, eight FD-1 IUDs, one Saf-T-Coil IUD, one KS wing IUD, and one Chinese IUD. A very hard type Ota ring IUD inserted for 40 years could not be removed. All of the other IUDs were removed uneventfully. Most of the patients could tolerate the procedure without the use of analgesia or anesthesia. No subsequent complication except bleeding for several days was encountered.ConclusionUsing our method, lost IUDs either with or without strings can be effectively and safely retrieved in the office-based setting without analgesia or anesthesia

    MicroRNA in Cervical Cancer: OncomiRs and Tumor Suppressor miRs in Diagnosis and Treatment

    Get PDF
    Cervical cancer is a female-specific disease with a high incidence and mortality. MicroRNAs (miRNAs) are implicated in posttranscriptional regulation of gene expression and in the pathogenic mechanisms of cancer, suggesting their importance in diagnosis and treatment. miRNAs may have roles in the pathogenesis of cervical cancer based on the increases or decreases in several specific miRNAs found in patients with this disease. The miRNAs implicated in cervical cancer are miR-21, miR-126, and miR-143, and clinical application of these miRNAs for diagnosis and treatment is under investigation. Methods for diagnosis of cervical cancer include analysis of changes in the levels of specific miRNAs in serum and determination of aberrant hypermethylation of miRNAs. Supplementation of miR-143 or inhibition of miR-21 activity in vivo may be therapeutic strategy for cervical cancer. Previous approaches to development of siRNA as a drug have provided information for establishment of therapy based on these approaches, and an anti-miR-21 inhibitor has been developed. miRNAs also have effects on drug resistance and may be useful in combination therapy with other drugs

    Bortezomib Reduces the Tumorigenicity of Multiple Myeloma via Downregulation of Upregulated Targets in Clonogenic Side Population Cells

    Get PDF
    Side population (SP) cells in cancers, including multiple myeloma, exhibit tumor-initiating characteristics. In the present study, we isolated SP cells from human myeloma cell lines and primary tumors to detect potential therapeutic targets specifically expressed in SP cells. We found that SP cells from myeloma cell lines (RPMI 8226, AMO1, KMS-12-BM, KMS-11) express CD138 and that non-SP cells include a CD138-negative population. Serial transplantation of SP and non-SP cells into NOD/Shi-scid IL-2 gamma nul mice revealed that clonogenic myeloma SP cells are highly tumorigenic and possess a capacity for self-renewal. Gene expression analysis showed that SP cells from five MM cell lines (RPMI 8226, AMO1, KMS-12-BM, KMS-11, JJN3) express genes involved in the cell cycle and mitosis (e. g., CCNB1, CDC25C, CDC2, BIRC5, CENPE, SKA1, AURKB, KIFs, TOP2A, ASPM), polycomb (e. g., EZH2, EPC1) and ubiquitin-proteasome (e. g., UBE2D3, UBE3C, PSMA5) more strongly than do non-SP cells. Moreover, CCNB1, AURKB, EZH2 and PSMA5 were also upregulated in the SPs from eight primary myeloma samples. On that basis, we used an aurora kinase inhibitor (VX-680) and a proteasome inhibitor (bortezomib) with RPMI 8226 and AMO1 cells to determine whether these agents could be used to selectively target the myeloma SP. We found that both these drugs reduced the SP fraction, though bortezomib did so more effectively than VX-680 due to its ability to reduce levels of both phospho-histone H3 (p-hist. H3) and EZH2; VX-680 reduced only p-hist. H3. This is the first report to show that certain oncogenes are specifically expressed in the myeloma SP, and that bortezomib effectively downregulates expression of their products. Our approach may be useful for screening new agents with which to target a cell population possessing strong tumor initiating potential in multiple myeloma

    小学生がうま味の相乗効果を学ぶための味覚授業の実施

    Get PDF
    The purpose of this study was to assess whether elementary school children were able to learn the synergistic effects of umami flavor through the implementation of a sense of taste class for them. The sense of taste class held for 182 elementary school children (aged, 10–11 years old in Kyoto city). The subjects assessed three types of broths: dried bonito (DB), kombu kelp (KK), and dried bonito-kombu kelp (DB-KK). The subject evaluated the broth for several factors: tastiness, umami flavor, aroma, fishy smell. In addition, children were asked to write their own comments about what they had learned or noticed. A total of 147 healthy subjects were analyzed.The results of the sensory evaluation showed that the children sensed umami flavor and tastiness more significantly in DB-KK broth than in KK broth. They also evaluated the DB broth and DB-KK broth to have a significantly better aroma than KK broth (both at p<0.05). The analysis of the comment showed that 11 children (7.5%) wrote about their understanding of the fundamental taste umami, and 31 children (21.1%) wrote about understanding the synergistic effect of umami flavor. These results suggest that the implementation of the sense of taste class is effective to learn the synergistic effects of umami flavor.論

    Two mechanisms of the enhanced antibody-dependent cellular cytotoxicity (ADCC) efficacy of non-fucosylated therapeutic antibodies in human blood

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antibody-dependent cellular cytotoxicity (ADCC) has recently been identified as one of the critical mechanisms underlying the clinical efficacy of therapeutic antibodies, especially anticancer antibodies. Therapeutic antibodies fully lacking the core fucose of the Fc oligosaccharides have been found to exhibit much higher ADCC in humans than their fucosylated counterparts. However, data which show how fully non-fucosylated antibodies achieve such a high ADCC in human whole blood have not yet been disclosed. The precise mechanisms responsible for the high ADCC mediated by fully non-fucosylated therapeutic antibodies, even in the presence of human plasma, should be explained based on direct evidence of non-fucosylated antibody action in human blood.</p> <p>Methods</p> <p>Using a human <it>ex vivo </it>B-cell depletion assay with non-fucosylated and fucosylated anti-CD20 IgG1s rituximab, we monitored the binding of the therapeutic agents both to antigens on target cells (target side interaction) and to leukocyte receptors (FcγR) on effector cells (effector side interaction), comparing the intensities of ADCC in human blood.</p> <p>Results</p> <p>In the target side interaction, down-modulation of CD20 on B cells mediated by anti-CD20 was not observed. Simple competition for binding to the antigens on target B cells between fucosylated and non-fucosylated anti-CD20s was detected in human blood to cause inhibition of the enhanced ADCC of non-fucosylated anti-CD20 by fucosylated anti-CD20. In the effector side interaction, non-fucosylated anti-CD20 showed sufficiently high FcγRIIIa binding activity to overcome competition from plasma IgG for binding to FcγRIIIa on natural killer (NK) cells, whereas the binding of fucosylated anti-CD20 to FcγRIIIa was almost abolished in the presence of human plasma and failed to recruit NK cells effectively. The core fucosylation levels of individual serum IgG1 from healthy donors was found to be so slightly different that it did not affect the inhibitory effect on the ADCC of fucosylated anti-CD20.</p> <p>Conclusion</p> <p>Our results demonstrate that removal of fucosylated antibody ingredients from antibody therapeutics elicits high ADCC in human blood by two mechanisms: namely, by evading the inhibitory effects both of plasma IgG on FcγRIIIa binding (effector side interaction) and of fucosylated antibodies on antigen binding (target side interaction).</p
    corecore