134 research outputs found
Equilibria, Fixed Points, and Complexity Classes
Many models from a variety of areas involve the computation of an equilibrium
or fixed point of some kind. Examples include Nash equilibria in games; market
equilibria; computing optimal strategies and the values of competitive games
(stochastic and other games); stable configurations of neural networks;
analysing basic stochastic models for evolution like branching processes and
for language like stochastic context-free grammars; and models that incorporate
the basic primitives of probability and recursion like recursive Markov chains.
It is not known whether these problems can be solved in polynomial time. There
are certain common computational principles underlying different types of
equilibria, which are captured by the complexity classes PLS, PPAD, and FIXP.
Representative complete problems for these classes are respectively, pure Nash
equilibria in games where they are guaranteed to exist, (mixed) Nash equilibria
in 2-player normal form games, and (mixed) Nash equilibria in normal form games
with 3 (or more) players. This paper reviews the underlying computational
principles and the corresponding classes
Expressing combinatorial optimization problems by Linear Programs
AbstractMany combinatorial optimization problems call for the optimization of a linear function over a certain polytope. Typically, these polytopes have an exponential number of facets. We explore the problem of finding small linear programming formulations when one may use any new variables and constraints. We show that expressing the matching and the Traveling Salesman Problem by a symmetric linear program requires exponential size. We relate the minimum size needed by a LP to express a polytope to a combinatorial parameter, point out some connections with communication complexity theory, and examine the vertex packing polytope for some classes of graphs
The Complexity of Non-Monotone Markets
We introduce the notion of non-monotone utilities, which covers a wide
variety of utility functions in economic theory. We then prove that it is
PPAD-hard to compute an approximate Arrow-Debreu market equilibrium in markets
with linear and non-monotone utilities. Building on this result, we settle the
long-standing open problem regarding the computation of an approximate
Arrow-Debreu market equilibrium in markets with CES utility functions, by
proving that it is PPAD-complete when the Constant Elasticity of Substitution
parameter \rho is any constant less than -1
Polynomial Time Algorithms for Multi-Type Branching Processes and Stochastic Context-Free Grammars
We show that one can approximate the least fixed point solution for a
multivariate system of monotone probabilistic polynomial equations in time
polynomial in both the encoding size of the system of equations and in
log(1/\epsilon), where \epsilon > 0 is the desired additive error bound of the
solution. (The model of computation is the standard Turing machine model.)
We use this result to resolve several open problems regarding the
computational complexity of computing key quantities associated with some
classic and heavily studied stochastic processes, including multi-type
branching processes and stochastic context-free grammars
Recursive Concurrent Stochastic Games
We study Recursive Concurrent Stochastic Games (RCSGs), extending our recent
analysis of recursive simple stochastic games to a concurrent setting where the
two players choose moves simultaneously and independently at each state. For
multi-exit games, our earlier work already showed undecidability for basic
questions like termination, thus we focus on the important case of single-exit
RCSGs (1-RCSGs).
We first characterize the value of a 1-RCSG termination game as the least
fixed point solution of a system of nonlinear minimax functional equations, and
use it to show PSPACE decidability for the quantitative termination problem. We
then give a strategy improvement technique, which we use to show that player 1
(maximizer) has \epsilon-optimal randomized Stackless & Memoryless (r-SM)
strategies for all \epsilon > 0, while player 2 (minimizer) has optimal r-SM
strategies. Thus, such games are r-SM-determined. These results mirror and
generalize in a strong sense the randomized memoryless determinacy results for
finite stochastic games, and extend the classic Hoffman-Karp strategy
improvement approach from the finite to an infinite state setting. The proofs
in our infinite-state setting are very different however, relying on subtle
analytic properties of certain power series that arise from studying 1-RCSGs.
We show that our upper bounds, even for qualitative (probability 1)
termination, can not be improved, even to NP, without a major breakthrough, by
giving two reductions: first a P-time reduction from the long-standing
square-root sum problem to the quantitative termination decision problem for
finite concurrent stochastic games, and then a P-time reduction from the latter
problem to the qualitative termination problem for 1-RCSGs.Comment: 21 pages, 2 figure
- …