26,794 research outputs found

    Entropy production and rectification efficiency in colloids transport along a pulsating channel

    Full text link
    We study the current rectification of particles moving in a pulsating channel under the in uence of an applied force. We have shown the existence of diferent rectification scenarios in which entropic and energetic effects compete. The effect can be quantified by means of a rectification coefficient that is analyzed in terms of the force, the frequency and the diffusion coefficient. The energetic cost of the motion of the particles expressed in terms of the entropy production depends on the importance of the entropic contribution to the total force. Rectification is more important at low values of the applied force when entropic effects become dominant. In this regime, the entropy production is not invariant under reversal of the applied force. The phenomenon observed could be used to optimize transport in microfluidic devices or in biological channels

    Dynamical correlations near dislocation jamming

    Get PDF
    Dislocation assemblies exhibit a jamming or yielding transition at a critical external shear stress value σ=σc\sigma=\sigma_c. Nevertheless the nature of this transition has not been ascertained. Here we study the heterogeneous and collective nature of dislocation dynamics within a crystal plasticity model close to σc\sigma_c, by considering the first-passage properties of the dislocation dynamics. As the transition is approached in the moving phase, the first passage time distribution exhibits scaling, and a related peak {\it dynamical} susceptibility χ4∗\chi_4^* diverges as χ4∗∼(σ−σc)−α\chi_4^* \sim (\sigma-\sigma_c)^{-\alpha}, with α≈1.1\alpha \approx 1.1. We relate this scaling to an avalanche description of the dynamics. While the static structural correlations are found to be independent of the external stress, we identify a diverging dynamical correlation length ξy\xi_y in the direction perpendicular to the dislocation glide motion.Comment: 4 pages, 5 figure

    A model for cross-cultural reciprocal interactions through mass media

    Get PDF
    We investigate the problem of cross-cultural interactions through mass media in a model where two populations of social agents, each with its own internal dynamics, get information about each other through reciprocal global interactions. As the agent dynamics, we employ Axelrod's model for social influence. The global interaction fields correspond to the statistical mode of the states of the agents and represent mass media messages on the cultural trend originating in each population. Several phases are found in the collective behavior of either population depending on parameter values: two homogeneous phases, one having the state of the global field acting on that population, and the other consisting of a state different from that reached by the applied global field; and a disordered phase. In addition, the system displays nontrivial effects: (i) the emergence of a largest minority group of appreciable size sharing a state different from that of the applied global field; (ii) the appearance of localized ordered states for some values of parameters when the entire system is observed, consisting of one population in a homogeneous state and the other in a disordered state. This last situation can be considered as a social analogue to a chimera state arising in globally coupled populations of oscillators.Comment: 8 pages and 7 figure

    Nonequilibrium transitions induced by multiplicative noise

    Get PDF
    A new simple model exhibiting a noise-induced ordering transition (NIOT) and a noise-induced disordering transition (NIDT), in which the noise is purely multiplicative, is presented. Both transitions are found in two as well as in one dimension (where they had not been previously reported). We show analytically and numerically that the critical behavior of these two transitions is described by the so called multiplicative noise(MN) universality class. A computation of the set of critical exponents is presented in both d=1d=1, and d=2d=2 (where they have not been previously measured).Comment: 4 pages, 2 figures, Late

    Dynamics of link states in complex networks: The case of a majority rule

    Get PDF
    Motivated by the idea that some characteristics are specific to the relations between individuals and not of the individuals themselves, we study a prototype model for the dynamics of the states of the links in a fixed network of interacting units. Each link in the network can be in one of two equivalent states. A majority link-dynamics rule is implemented, so that in each dynamical step the state of a randomly chosen link is updated to the state of the majority of neighboring links. Nodes can be characterized by a link heterogeneity index, giving a measure of the likelihood of a node to have a link in one of the two states. We consider this link-dynamics model on fully connected networks, square lattices and Erd \"os-Renyi random networks. In each case we find and characterize a number of nontrivial asymptotic configurations, as well as some of the mechanisms leading to them and the time evolution of the link heterogeneity index distribution. For a fully connected network and random networks there is a broad distribution of possible asymptotic configurations. Most asymptotic configurations that result from link-dynamics have no counterpart under traditional node dynamics in the same topologies.Comment: 9 pages, 13 figure
    • …
    corecore