276 research outputs found
Procedimiento para la purificación de Triglicéridos que contienen ácido Gamma-Linolenico en posición SN-2
Número de publicación: ES2345529 A1 (24.09.2010) También publicado como: ES2345529 B2 (21.07.2011) Número de Solicitud: Consulta de Expedientes OEPM (C.E.O.) P200900892(13.03.2009)Procedimiento para la purificación de triglicéridos que contienen ácido gamma-linolénico en posición sn-2. Con la finalidad de purificar triglicéridos que contienen ácido gamma-linolénico a partir de fuentes naturales, se utiliza una columna cromatográfica gravimétrica en fase normal, trabajando en gradiente de polaridad con solventes biocompatibles. Así se consigue la purificación de triglicéridos que cuentan en su estructura con una o más moléculas de ácido gamma-linolénico, pudiendo ser utilizados con diversos fines. Con esta metodología es posible trabajar a escala industrial, pues es fácilmente escalable, a diferencia de otras técnicas que son aplicables a escala analítica pero presentan serios inconvenientes en cuanto a coste y adiestramiento del personal a la hora de utilizarlas con fines industriales, como por ejemplo la cromatografía líquida de alta resolución (HPLC).Universidad de Almerí
Procedimiento para la purificación de Triglicéridos que contienen ácido Estearidónico en posición SN-2
Número de publicación: ES2363518 A1 (08.08.2011)También publicado como: ES2363518 A8 (10.04.2012), ES2363518 B1 (13.06.2012)Número de Solicitud: Consulta de Expedientes OEPM (C.E.O.) P201000070(23.01.2010)Procedimiento para la purificación de triglicéridos que contiene ácido estearidónico en posición sn-2. La invención se refiere a un procedimiento para la purificación de TGs ricos en SDA en posición sn-2 mediante cromatografía en columna gravimétrica, a un extracto de TGs ricos en SDA en posición sn-2 obtenido mediante dicho procedimiento y su uso en la industria.Univerisda de Almerí
Numerical simulation and experiments of the multiphase flow in a liquid-liquid cylindrical cyclone separator
A Liquid-Liquid Cylindrical Cyclone separator (LLCC) is a device used in the petroleum industry to separate the oil-water mixture obtained from the well. The use of this device has not been widespread due to the lack of tools for predicting its separation capability. This paper presents a numerical and experimental study of the fluid dynamic performance of this type of cylindrical cyclone separators. The use of numerical simulations would reduce the time and cost necessary to obtain information for predicting the behavior of the equipment. The objective of this study is to determine if CFD (Computational Fluid Dynamics) techniques are able to reproduce the behavior of a LLCC separator. The CFD software examined was ANSYS-CFX 5.6TM and numerical simulations were carried out using the dispersed model with oil as the dispersed phase. The oil and water mixture entering the separator is divided due to centrifugal and buoyancy forces in an upper (oil rich) exit and a bottom (water rich) exit. The separation capability is determined as the maximum amount of water removed from the mixture with the minimum amount of oil content in the water rich exit. The experiments were conducted in a transparent LLCC separator that allows the visualization of the mixture and the measurement of the oil content. Experiments were conducted for three variables: mixture velocity and water content at the entrance, and the split ratio. The split ratio is defined as the bottom exit flow rate divided by the water flow rate at the entrance. The results showed that CFD tools are able to reproduce the oil content obtained from the experiments for all analyzed conditions. Additionally, the mixture distribution images from numerical and experimental data showed good agreement. This study confirms the capacity of CFD tools for the multiphase flow analysis of LLCC separators
Numerical simulation and experiments of the multiphase flow in a liquid-liquid cylindrical cyclone separator
A Liquid-Liquid Cylindrical Cyclone separator (LLCC) is a device used in the petroleum industry to separate the oil-water mixture obtained from the well. The use of this device has not been widespread due to the lack of tools for predicting its separation capability. This paper presents a numerical and experimental study of the fluid dynamic performance of this type of cylindrical cyclone separators. The use of numerical simulations would reduce the time and cost necessary to obtain information for predicting the behavior of the equipment. The objective of this study is to determine if CFD (Computational Fluid Dynamics) techniques are able to reproduce the behavior of a LLCC separator. The CFD software examined was ANSYS-CFX 5.6TM and numerical simulations were carried out using the dispersed model with oil as the dispersed phase. The oil and water mixture entering the separator is divided due to centrifugal and buoyancy forces in an upper (oil rich) exit and a bottom (water rich) exit. The separation capability is determined as the maximum amount of water removed from the mixture with the minimum amount of oil content in the water rich exit. The experiments were conducted in a transparent LLCC separator that allows the visualization of the mixture and the measurement of the oil content. Experiments were conducted for three variables: mixture velocity and water content at the entrance, and the split ratio. The split ratio is defined as the bottom exit flow rate divided by the water flow rate at the entrance. The results showed that CFD tools are able to reproduce the oil content obtained from the experiments for all analyzed conditions. Additionally, the mixture distribution images from numerical and experimental data showed good agreement. This study confirms the capacity of CFD tools for the multiphase flow analysis of LLCC separators
Frictional power losses on spur gears with tip reliefs. The load sharing role
The load sharing impact on the efficiency of spur gears with modified profile was assessed in this work. The aim was to analyse the influence of the profile modifications on the load sharing, which also considers the effect of the torque level on the system deflections, and how these load sharing variations affected the system efficiency. Due to the frictional effect importance on power losses, in the operating conditions considered, sliding friction between teeth in presence of lubricant was studied in this proposal. The results established that tip relief improves the efficiency of the system due to the reduction of effective contact ratio. Moreover, there is a tip relief which makes optimal the efficiency in specific operating conditions, corresponding to the unit value of the effective contact ratio. Thus, the main conclusion of this work is that the tip relief which makes optimal the efficiency coincides with the theoretical dynamic optimum of the transmission.The authors would like to acknowledge Project DPI 2013-44860 funded by the Spanish Ministry of Science and Technology and the COST ACTION TU 1105 for supporting this research
Analysis of human-induced vibrations in a lightweight framework
This article analyzes the vibratory behavior of a Material-Composed Sandwich (MCS) framework for residential buildings. It has been observed qualitatively that the use of this kind of framework leads to poor comfort levels. The goal of this study is to find out the sources of this lack of comfort, in order to suggest guidelines that can enhance the performance of the MCS framework, without jeopardizing its advantages with respect to the traditional frameworks. To achieve this objective, an Experimental Modal Analysis (EMA) of a sample MCS framework has been carried out in order to determine the dynamic parameters. Then, a numerical Finite Element (FE) model of said sample MCS framework has been developed and adjusted with the results obtained in the experimental test. Based on this, a real-dimension MCS framework FE model has been built and the resultant behavior compared with that of a commonly used framework made of reinforced concrete. This comparison is finally used to assess the uncomfortable dynamic response of the MCS framework and to draw conclusions on the design guidelines in order to enhance the MCS framework vibratory behaviorThe authors would like to acknowledge Project DPI2013-44860 funded by the Spanish Ministry of Science and Technology and COST ACTION TU 1105 for supporting this research
Enhancement of Mechanical Engineering Degree through student design competition as added value. Considerations and viability
This paper proposes using a student design competition as a learning tool in the Mechanical Engineering Degree for enhancing the general competences and motivation of the students, transferring theoretical knowledge to practical situations and bringing together all courses involved under a common framework. This constitutes an added value that the in-person universities should offer to their students as a consequence of the Bologna process and the raising of open online resources for self-learning. In order to assess the viability of this proposal, a pilot competition design activity (CDA) is presented using project-based learning methods during a Mechanism Theory course for sophomore students. Meanwhile, 27 participants of a 45-student course from a European university took part in the pilot CDA, which consisted of redesigning the motorbike rear suspension used in a student design competition. Participants also completed mid-term and final exams as well as a survey to get their perception of this activity. Based on the success of the pilot CDA, the authors are planning to implement the proposal, including similar CDAs in other Mechanical Engineering courses to use the competition as a link between them and to encourage students to participate on the competition.This work [Project DPI2013-44860] was supported by the Spanish Ministry of Science and Technology and Vicerrector Primero y de Profesorado of the University of Cantabria
Planetary transmission load sharing: Manufacturing errors and system configuration study
This paper addresses the effect of manufacturing errors such as eccentricity and planet pin positioning errors on the quasi-static behavior of a 3 planet planetary transmission, taking into account different configurations regarding the bearing condition of the sun gear shaft. The aim of the paper is to shed light on some untouched aspects of the load sharing behavior of planetary transmissions, such as the effect of radial positioning errors of the planets when different pressure angles are used, and the impact of the different loadings per planet on the actual load per tooth.
A modeling approach is employed, and physical explanations and simplified graphs are provided to help understand the behavior of the transmission when the sun is allowed to float and errors are introduced. The model used, developed by the authors and presented and validated in previous works, hybridizes analytical solutions with finite element models in order to compute the contact forces.
The results obtained show that the teeth loads are much lower than expected compared to the planet uneven loads, both in the non-defected and defected transmission, and that radial positioning errors have non-negligible effect on the load sharing ratio under certain operating conditions.The authors would like to acknowledge Project DPI2013-44860 funded by the Spanish Ministry of Science and Technology for supporting this research
Frictional power losses on spur gears with tip reliefs. The friction coefficient role
In this proposal, the effect of the friction coefficient on the efficiency of spur gears with tip reliefs was analysed. For this purpose, the efficiency values using an average friction coefficient along the mesh cycle were compared with those obtained implementing an enhanced friction coefficient formulation, which is based on elastohydrodynamic lubrication fundamentals. In this manner, it can be established the differences between both formulations in the efficiency and friction coefficient values, as well as the advantages of using this enhanced friction coefficient with respect to formulations implemented in traditional approaches of efficiency calculation. In addition to studying the impact of the friction coefficient choice on efficiency, the profile modifications influence on the friction coefficient and efficiency was also assessed. In this regard, three tip relief case studies were set out; pinion tip reliefs, driven wheel tip reliefs and profile modifications in both gears. From the results, it was inferred that the choice of friction coefficient formulation clearly influences the efficiency in gear transmissions with tip reliefs, obtaining discrepancies between both formulations with regard to which tip relief case study provides the lowest efficiency values.The authors would like to acknowledge Project DPI 2013-44860 funded by the Spanish Ministry of Science and Technology
Gear transmission dynamics: Effects of index and run out errors
This work describes a non-linear dynamic model for the study of the vibration signals generated by gear transmissions. The developed model considers both the parametric excitations due to the variable compliance of bearings and gears, can handle changes in the transmitted torque and allows the integration of the dynamic equations quickly and accurately. This model has been developed previously by the authors to assess the profile deviations on the dynamic behavior of gear transmissions and its influence on the transmitted torque. It also includes the presence of gear defects as cracks and pitting during the calculation of meshing forces. In this paper, the model has been enhanced in order to include two common defects such as index errors and run out or eccentricity errors. Index errors occur as a result of a non-uniform angular distribution of the tooth profiles along the pitch circle. Run out appears due to the displacement of the geometric center of the gear with respect to the center of rotation of the shaft on which it is mounted. Although both errors are caused by different reasons, sometimes they have been confused because of their similitudes. The procedure for including both kinds of errors in the model is described and simulations under several transmitted torques are presented. The results are assessed and compared focusing the attention on certain transmission parameters and magnitudes as transmission error, load forces in the tooth flanks and demodulation techniques on the resulting vibratory signals.The authors would like to acknowledge Project DPI2013-44860 funded by the Spanish Ministry of Science and Technology and COST ACTION TU 1105 for supporting this research
- …