113 research outputs found

    West Nile Virus Replication Requires Fatty Acid Synthesis but Is Independent on Phosphatidylinositol-4-Phosphate Lipids

    Get PDF
    West Nile virus (WNV) is a neurovirulent mosquito-borne flavivirus, which main natural hosts are birds but it also infects equines and humans, among other mammals. As in the case of other plus-stranded RNA viruses, WNV replication is associated to intracellular membrane rearrangements. Based on results obtained with a variety of viruses, different cellular processes have been shown to play important roles on these membrane rearrangements for efficient viral replication. As these processes are related to lipid metabolism, fatty acid synthesis, as well as generation of a specific lipid microenvironment enriched in phosphatidylinositol-4-phosphate (PI4P), has been associated to it in other viral models. In this study, intracellular membrane rearrangements following infection with a highly neurovirulent strain of WNV were addressed by means of electron and confocal microscopy. Infection of WNV, and specifically viral RNA replication, were dependent on fatty acid synthesis, as revealed by the inhibitory effect of cerulenin and C75, two pharmacological inhibitors of fatty acid synthase, a key enzyme of this process. However, WNV infection did not induce redistribution of PI4P lipids, and PI4P did not localize at viral replication complex. Even more, WNV multiplication was not inhibited by the use of the phosphatidylinositol-4-kinase inhibitor PIK93, while infection by the enterovirus Coxsackievirus B5 was reduced. Similar features were found when infection by other flavivirus, the Usutu virus (USUV), was analyzed. These features of WNV replication could help to design specific antiviral approaches against WNV and other related flaviviruses

    Widespread distribution of hepatitis E virus in Spanish pig herds

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatitis E virus (HEV) infection is a serious health problem in developing countries and is also increasingly reported in industrialized regions. HEV is considered a zoonotic agent and strains isolated from swine and human sources are genetically similar. Thus, HEV is of increasing importance to both public and animal health. The aim of the present study was to evaluate the distribution of HEV in a large population of pigs from herds located in different autonomous regions throughout Spain.</p> <p>Results</p> <p>The presence of anti-HEV IgG antibodies was analyzed in 1141 swine serum samples (corresponding to 381 pigs younger than 6 months and 760 pigs older than 6 months) collected from 85 herds. Herds were located in 6 provinces in 4 autonomous regions throughout Spain. At least one pig tested positive for anti-HEV IgG in over 80% of herds. Of individual pigs, 20.4% (233/1141) were positive for anti-HEV IgG, with the prevalence being higher in adult pigs than in those under 6 months (30.2% <it>vs. </it>15.5%). A subset of serum samples taken at 2- to 5-week intervals showed that seroprevalence dropped between 3 and 11 weeks of age, and then rose significantly by the 15th week. Pigs were also examined for the presence of HEV-RNA by RT-PCR. Of pigs tested for the presence of HEV-RNA 18.8% (64/341) were positive, with at least one pig in almost half of the herds testing positive. HEV-RNA amplicons from several positive pigs were sequenced and all were of genotype 3.</p> <p>Conclusions</p> <p>HEV was found to be widely distributed among swine farms across Spain, with the prevalence being highest among animals older than 6 months. These results indicate that HEV infection either is or is likely to become endemic in the Spanish swine population.</p

    Negatively charged amino acids at the foot-and-mouth disease virus capsid reduce the virion-destabilizing effect of viral RNA at acidic pH

    Full text link
    Elucidation of the molecular basis of the stability of foot-and-mouth disease virus (FMDV) particles is relevant to understand key aspects of the virus cycle. Residue N17D in VP1, located at the capsid inner surface, modulates the resistance of FMDV virion to dissociation and inactivation at acidic pH. Here we have studied whether the virion-stabilizing effect of amino acid substitution VP1 N17D may be mediated by the alteration of electrostatic charge at this position and/or the presence of the viral RNA. Substitutions that either introduced a positive charge (R,K) or preserved neutrality (A) at position VP1 17 led to increased sensitivity of virions to inactivation at acidic pH, while replacement by negatively charged residues (D,E) increased the resistance of virions to acidic pH. The role in virion stability of viral RNA was addressed using FMDV empty capsids that have a virtually unchanged structure compared to the capsid in the RNA-filled virion, but that are considerably more resistant to acidic pH than WT virions, supporting a virion-destabilizing effect of the RNA. Remarkably, no differences were observed in the resistance to dissociation at acidic pH between the WT empty capsids and those harboring replacement N17D. Thus, the virion-destabilizing effect of viral RNA at acidic pH can be partially restored by introducing negatively charged residues at position VP1 N17Work in F.S®s laboratory was funded by grants from MINECO-FEDER EU (AGL2017–84097-C2–1-R), Comunidad de Madrid co-fnanced with ECFEDER funds (P2018/BAA-4370). Work in M.G.M.®s laboratory was funded by grants from MINECO-FEDER EU (BIO2015–69928-R and RTI2018–096635-B-I00). Work by both groups was also funded by an institutional grant from Fundación Ramón Areces M.G.M. is an associate member of the Institute for Biocomputation and Physics of Complex Systems, Zaragoza, Spai

    Clinical infections by herpesviruses in patients treated with valproic acid: A nested case-control study in the Spanish Primary Care Database, BIFAP

    Get PDF
    The objective of this study is to evaluate the risk of clinical infections by herpesviruses in patients exposed to valproic acid (VPA).We performed a case-control study nested in a primary cohort selected from the Spanish primary care population-based research database BIFAP (Base de datos para la Investigación Farmacoepidemiológica en Atención Primaria) over the period 2001–2015. The events of interest were those diseases caused by any herpesviruses known to infect humans. For each case, up to 10 controls per case matched by age, gender, and calendar date were randomly selected. A conditional logistic regression was used to compute adjusted odds ratios (OR) and their 95% confidence intervals (95% CI). Current use of VPA was associated with a trend towards a reduced risk of clinical infections by herpesviruses as compared with non-users (OR 0.84; CI 95% 0.7–1.0; p = 0.057). Among current users, a trend to a decreased risk with treatment durations longer than 90 days was also observed. The results show a trend to a reduced risk of clinical infection by herpesviruses in patients exposed to VPA. These results are consistent with those in vitro studies showing that, in cultured cells, VPA can inhibit the production of the infectious progeny of herpesviruses. This study also shows the efficient use of electronic healthcare records for clinical exploratory research studie

    Non-coding RNAs derived from the foot-and-mouth disease virus genome trigger broad antiviral activity against coronaviruses

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of a potentially severe respiratory disease, the coronavirus disease 2019 (COVID-19), an ongoing pandemic with limited therapeutic options. Here, we assessed the anti-coronavirus activity of synthetic RNAs mimicking specific domains in the non-coding regions of the foot-and-mouth disease virus (FMDV) genome (ncRNAs). These molecules are known to exert broad-spectrum antiviral activity in cell culture, mice and pigs effectively triggering the host innate immune response. The ncRNAs showed potent antiviral activity against SARS-CoV-2 after transfection in human intestinal Caco-2 and lung epithelium Calu-3 2B4 cells. When the in vivo efficacy of the FMDV ncRNAs was assessed in K18-hACE2 mice, administration of naked ncRNA before intranasal SARS-CoV-2 infection significantly decreased the viral load and the levels of pro-inflammatory cytokines in the lungs compared with untreated infected mice. The ncRNAs were also highly efficacious when assayed against common human HCoV-229E and porcine transmissible gastroenteritis virus (TGEV) in hepatocyte-derived Huh-7 and swine testis ST cells, respectively. These results are a proof of concept of the pan-coronavirus antiviral activity of the FMDV ncRNAs including human and animal divergent coronaviruses and potentially enhance our ability to fight future emerging variants

    Pharmacological Elevation of Cellular Dihydrosphingomyelin Provides a Novel Antiviral Strategy against West Nile Virus Infection

    Get PDF
    The flavivirus life cycle is strictly dependent on cellular lipid metabolism. Polyphenols like gallic acid and its derivatives are promising lead compounds for new therapeutic agents as they can exert multiple pharmacological activities, including the alteration of lipid metabolism. The evaluation of our collection of polyphenols against West Nile virus (WNV), a representative medically relevant flavivirus, led to the identification of N,N'-(dodecane-1,12-diyl)bis(3,4,5-trihydroxybenzamide) and its 2,3,4-trihydroxybenzamide regioisomer as selective antivirals with low cytotoxicity and high antiviral activity (half-maximal effective concentrations [EC50s] of 2.2 and 0.24 ΌM, respectively, in Vero cells; EC50s of 2.2 and 1.9 ΌM, respectively, in SH-SY5Y cells). These polyphenols also inhibited the multiplication of other flaviviruses, namely, Usutu, dengue, and Zika viruses, exhibiting lower antiviral or negligible antiviral activity against other RNA viruses. The mechanism underlying their antiviral activity against WNV involved the alteration of sphingolipid metabolism. These compounds inhibited ceramide desaturase (Des1), promoting the accumulation of dihydrosphingomyelin (dhSM), a minor component of cellular sphingolipids with important roles in membrane properties. The addition of exogenous dhSM or Des1 blockage by using the reference inhibitor GT-11 {N-[(1R,2S)-2-hydroxy-1-hydroxymethyl-2-(2-tridecyl-1-cyclopropenyl)ethyl]octanamide} confirmed the involvement of this pathway in WNV infection. These results unveil the potential of novel antiviral strategies based on the modulation of the cellular levels of dhSM and Des1 activity for the control of flavivirus infection.We thank Theodore C. Pierson (National Institutes of Health, USA) for the subgenomic replicon of WNV. This work was supported by the Spanish Ministry of Science and Innovation AEI/10.13039/501100011033 under grants PID2019-105117RR-C21 (to M.A.M.-A.), PID2019-105117RR-C22 (to M.-J.P.-P.), and PID2020-119195RJ-I00 (to N.J.d.O.) and by the AECSIC under grant PIE-201980E100 (to M.-J.P.-P. and A.S.-F.). This research work was also funded by the European Commission-NextGenerationEU (regulation EU 2020/2094) through CSIC’s Global Health Platform (PTI Salud Global). P.M.-C. was supported by an FPI fellowship (PRE2020-093374) from AEI/10.13039/501100011033. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.Peer reviewe

    Nanobodies Protecting From Lethal SARS-CoV-2 Infection Target Receptor Binding Epitopes Preserved in Virus Variants Other Than Omicron

    Get PDF
    The emergence of SARS-CoV-2 variants that escape from immune neutralization are challenging vaccines and antibodies developed to stop the COVID-19 pandemic. Thus, it is important to establish therapeutics directed toward multiple or specific SARS-CoV-2 variants. The envelope spike (S) glycoprotein of SARS-CoV-2 is the key target of neutralizing antibodies (Abs). We selected a panel of nine nanobodies (Nbs) from dromedary camels immunized with the receptor-binding domain (RBD) of the S, and engineered Nb fusions as humanized heavy chain Abs (hcAbs). Nbs and derived hcAbs bound with subnanomolar or picomolar affinities to the S and its RBD, and S-binding cross-competition clustered them in two different groups. Most of the hcAbs hindered RBD binding to its human ACE2 (hACE2) receptor, blocked cell entry of viruses pseudotyped with the S protein and neutralized SARS-CoV-2 infection in cell cultures. Four potent neutralizing hcAbs prevented the progression to lethal SARS-CoV-2 infection in hACE2-transgenic mice, demonstrating their therapeutic potential. Cryo-electron microscopy identified Nb binding epitopes in and out the receptor binding motif (RBM), and showed different ways to prevent virus binding to its cell entry receptor. The Nb binding modes were consistent with its recognition of SARS-CoV-2 RBD variants; mono and bispecific hcAbs efficiently bound all variants of concern except omicron, which emphasized the immune escape capacity of this latest variant.This work was partially funded by Ministerio de Ciencia e Innovación (MICIN; https://www.ciencia.gob.es/) and the Spanish Research Council (CSIC; https://www.csic.es/) under grants PIE-RD-COVID 19 (No 202020E079) and PTI+ Salud Global REC_EU (No SGL 2103051, NextGenerationEU) to LF, JMC, PG, and UG, and (No SGL 2103053, NextGenerationEU) to MM-A. This study was partially conducted within the CSIC Antiviral Screening Network, an infrastructure supported by NextGeneration EU funds (https://ec.europa.eu/info/strategy/recovery-plan-europe_es) from the European Union and the European Virus Archive Global (EVag) of the European Union’s Horizon 2020 (https://ec.europa.eu/programmes/horizon2020/en/home) research and innovation programme (No 871029) to PG and UG. EM facilities of CNB-CSIC were supported by Ministerio de Ciencia e Innovación (MICIN; https://www.ciencia.gob.es/), EU-FEDER (https://ec.europa.eu/regional_policy/es/funding/erdf/) CRIOMECORR project (ESFRI-2019-01-CSIC-16). JMC access to the European Synchrotron Radiation Facility (ESRF) CM01 line through the Iberian-BAG, and to the Instruct Image Processing Center (I2PC, http://i2pc.es/) by projects PID16168 and PID14989. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe

    Identification of West Nile virus RNA-dependent RNA polymerase non-nucleoside inhibitors by real-time high throughput fluorescence screening

    Get PDF
    West Nile virus (WNV) is a re-emergent mosquito-borne RNA virus that causes major outbreaks of encephalitis around the world. However, there is no therapeutic treatment to struggle against WNV, and the current treatment relies on alleviating symptoms. Therefore, due to the threat virus poses to animal and human health, there is an urgent need to come up with fast strategies to identify and assess effective antiviral compounds. A relevant target when developing drugs against RNA viruses is the viral RNA-dependent RNA polymerase (RdRp), responsible for the replication of the viral genome within a host cell. RdRps are key therapeutic targets based on their specificity for RNA and their essential role in the propagation of the infection. We have developed a fluorescence-based method to measure WNV RdRp activity in a fast and reliable real-time way. Interestingly, rilpivirine has shown in our assay inhibition of the WNV RdRp activity with an IC50 value of 3.3 ÎŒM and its antiviral activity was confirmed in cell cultures. Furthermore, this method has been extended to build up a high-throughput screening platform to identify WNV polymerase inhibitors. By screening a small chemical library, novel RdRp inhibitors 1–4 have been identified. When their antiviral activity was tested against WNV in cell culture, 4 exhibited an EC50 value of 2.5 ÎŒM and a selective index of 12.3. Thus, rilpivirine shows up as an interesting candidate for repurposing against flavivirus. Moreover, the here reported method allows the rapid identification of new WNV RdRp inhibitors

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic
    • 

    corecore