6 research outputs found
Proteomic Analysis of <i>Sporothrix schenckii</i> Exposed to Oxidative Stress Induced by Hydrogen Peroxide
Sporothrix schenckii modulates the expression of its cell wall proteins (CWPs) in response to reactive oxygen species (ROS) generated by the phagocytic cells of the human host, which allows it to evade and escape the immune system. In this study, we performed a comparative proteomic analysis of the CW of S. schenckii after exposure and nonexposure to H2O2. Several CWPs involved in CW remodeling and fungal pathogenesis that modulated their expression in response to this oxidizing agent were identified, as were a number of antioxidant enzymes and atypical CWPs, called moonlighting proteins, such as the Hsp70-5, lipase 1 (Lip1), enolase (Eno), and pyruvate kinase (Pk). Moreover, RT-qPCR assays demonstrated that the transcription of genes HSP70-5, LIP1, ENO, and PK is regulated in response to the oxidant. The results indicated that S. schenckii differentially expressed CWPs to confer protection against ROS upon this fungus. Furthermore, among these proteins, antioxidant enzymes and interestingly, moonlighting-like CWPs play a role in protecting the fungus from oxidative stress (OS), allowing it to infect human host cells
Arsenopyrite weathering under conditions of simulated calcareous soil
International audienceMining activities release arsenopyrite into calcareous soils where it undergoes weathering generating toxic compounds. The research evaluates the environmental impacts of these processes under semi-alkaline carbonated conditions. Electrochemical (cyclic voltammetry, chronoamperometry, EIS), spectroscopic (Raman, XPS), and microscopic (SEM, AFM, TEM) techniques are combined along with chemical analyses of leachates collected from simulated arsenopyrite weathering to comprehensively examine the interfacial mechanisms. Early oxidation stages enhance mineral reactivity through the formation of surface sulfur phases (e.g., S (n) (2-)/S-0) with semiconductor properties, leading to oscillatory mineral reactivity. Subsequent steps entail the generation of intermediate siderite (FeCO3)-like, followed by the formation of low-compact mass sub-micro ferric oxyhydroxides (alpha, gamma-FeOOH) with adsorbed arsenic (mainly As(III), and lower amounts of As(V)). In addition, weathering reactions can be influenced by accessible arsenic resulting in the formation of a symplesite (Fe-3(AsO4)(3))-like compound which is dependent on the amount of accessible arsenic in the system. It is proposed that arsenic release occurs via diffusion across secondary alpha, gamma-FeOOH structures during arsenopyrite weathering. We suggest weathering mechanisms of arsenopyrite in calcareous soil and environmental implications based on experimental data
Pyrolysis Kinetics of <i>Byrsonima crassifolia</i> Stone as Agro-Industrial Waste through Isoconversional Models
This study is aimed at the analysis of the pyrolysis kinetics of Nanche stone BSC (Byrsonima crassifolia) as an agro-industrial waste using non-isothermal thermogravimetric experiments by determination of triplet kinetics; apparent activation energy, pre-exponential factor, and reaction model, as well as thermodynamic parameters to gather the required fundamental information for the design, construction, and operation of a pilot-scale reactor for the pyrolysis this lignocellulosic residue. Results indicate a biomass of low moisture and ash content and a high volatile matter content (≥70%), making BCS a potential candidate for obtaining various bioenergy products. Average apparent activation energies obtained from different methods (KAS, FWO and SK) were consistent in value (~123.8 kJ/mol). The pre-exponential factor from the Kissinger method ranged from 105 to 1014 min−1 for the highest pyrolytic activity stage, indicating a high-temperature reactive system. The thermodynamic parameters revealed a small difference between EA and ∆H (5.2 kJ/mol), which favors the pyrolysis reaction and indicates the feasibility of the energetic process. According to the analysis of the reaction models (master plot method), the pyrolytic degradation was dominated by a decreasing reaction order as a function of the degree of conversion. Moreover, BCS has a relatively high calorific value (14.9 MJ/kg) and a relatively low average apparent activation energy (122.7 kJ/mol) from the Starink method, which makes this biomass very suitable to be exploited for value-added energy production