78 research outputs found

    New delivery systems for amphotericin B applied to the improvement of leishmaniasis treatment

    Full text link
    Leishmaniasis is one of the six major tropical diseases targeted by the World Health Organization. It is a life-threatening disease of medical, social and economic importance in endemic areas. No vaccine is yet available for human use, and chemotherapy presents several problems. Pentavalent antimonials have been the drugs of choice to treat the disease for more than six decades; however, they exhibit high toxicity and are not indicated for children, for pregnant or breastfeeding women or for chronically ill patients. Amphotericin B (AmpB) is a second-line drug, and although it has been increasingly used to treat visceral leishmaniasis (VL), its clinical use has been hampered due to its high toxicity. This review focuses on the development and in vivo usage of new delivery systems for AmpB that aim to decrease its toxicity without altering its therapeutic efficacy. These new formulations, when adjusted with regard to their production costs, may be considered new drug delivery systems that promise to improve the treatment of leishmaniasis, by reducing the side effects and the number of doses while permitting a satisfactory cost-benefit rati

    New delivery systems for amphotericin B applied to the improvement of leishmaniasis treatment

    Get PDF
    © 2015, Sociedade Brasileira de Medicina Tropical. All rights reserved. Leishmaniasis is one of the six major tropical diseases targeted by the World Health Organization. It is a life-threatening disease of medical, social and economic importance in endemic areas. No vaccine is yet available for human use, and chemotherapy presents several problems. Pentavalent antimonials have been the drugs of choice to treat the disease for more than six decades; however, they exhibit high toxicity and are not indicated for children, for pregnant or breastfeeding women or for chronically ill patients. Amphotericin B (AmpB) is a second-line drug, and although it has been increasingly used to treat visceral leishmaniasis (VL), its clinical use has been hampered due to its high toxicity. This review focuses on the development and in vivo usage of new delivery systems for AmpB that aim to decrease its toxicity without altering its therapeutic efficacy. These new formulations, when adjusted with regard to their production costs, may be considered new drug delivery systems that promise to improve the treatment of leishmaniasis, by reducing the side effects and the number of doses while permitting a satisfactory cost-benefit ratio.Peer Reviewe

    Theranostic applications of phage display to control leishmaniasis: Selection of biomarkers for serodiagnostics, vaccination, and immunotherapy

    Get PDF
    © 2015, Sociedade Brasileira de Medicina Tropical. All rights reserved. Phage display is a high-throughput subtractive proteomic technology used for the generation and screening of large peptide and antibody libraries. It is based on the selection of phage-fused surface-exposed peptides that recognize specific ligands and demonstrate desired functionality for diagnostic and therapeutic purposes. Phage display has provided unmatched tools for controlling viral, bacterial, fungal, and parasitic infections, and allowed identification of new therapeutic targets to treat cancer, metabolic diseases, and other chronic conditions. This review presents recent advancements in serodiagnostics and prevention of leishmaniasis -an important tropical parasitic disease- achieved using phage display for the identification of novel antigens with improved sensitivity and specificity. Our focus is on theranostics of visceral leishmaniasis with the aim to develop biomarker candidates exhibiting both diagnostic and therapeutic potential to fight this important, yet neglected, tropical disease.Peer Reviewe

    Prophylactic properties of a Leishmania-specific hypothetical protein in a murine model of visceral leishmaniasis

    Get PDF
    In this work, the effect of vaccination of a newly described Leishmania infantum antigenic protein has been studied in BALB/c mice infected with this parasite species. The LiHyD protein was characterized after a proteomic screening performed with the sera from dogs suffering visceral leishmaniasis (VL). Its recombinant version was expressed, purified and administered to BALB/c mice in combination with saponin. As a result of vaccination and 10 weeks after challenge using an infective dose of L. infantum stationary promastigotes, vaccinated mice showed lower parasite burdens in different organs (liver, spleen, bone marrow and footpads' draining lymph nodes) than mice inoculated with the adjuvant alone or the vaccine diluent. Protected mice showed anti-Leishmania IgG2a antibodies and a predominant IL-12-driven IFN-γ production (mainly produced by CD4 T cells) against parasite proteins, whereas unprotected controls showed anti-Leishmania IgG1 antibodies and parasite-mediated IL-4 and IL-10 responses. Vaccinated mice showed an anti-LiHyD IgG2a humoral response, and their spleen cells were able to secrete LiHyD-specific IFN-γ, IL-12 and GM-CSF cytokines before and after infection. The protection was correlated with the Leishmania-specific production on nitric oxide. Altogether, the results indicate that the new LiHyD protein could be considered in vaccine formulations against VL.Instituto Nacional de Ci^encia e Tecnologia em Nano-biofarmac^eutica (INCT-NanoBiofar), FAPEMIG (CBB-APQ-00819-12 and CBB-APQ-01778-2014) and CNPq (APQ-482976/2012-8, APQ-488237/2013-0 and APQ-467640/2014-9). In addition, this study was partially funded by the Spanish grant from Ministerio de Economía y Competitividad-FEDER (FIS PI14/00366 from the Instituto de Salud Carlos III)Peer Reviewe

    A Leishmania-specific hypothetical protein expressed in both promastigote and amastigote stages of Leishmania infantum employed for the serodiagnosis of, and as a vaccine candidate against, visceral leishmaniasis

    Get PDF
    Background: LiHyV is an antigenic hypothetical protein present in both promastigote and amastigote stages of Leishmania infantum, which was recently identified by an immunoproteomic approach. A recombinant version of this protein (rLiHyV) was evaluated as a diagnostic marker for canine VL (CVL). In addition, the prophylactic efficacy of the rLiHyV protein, and two of its CD8+ T cell epitopes, has been analyzed in a murine model of visceral leishmaniasis (VL). Methods: Initially, the rLiHyV protein was evaluated by an ELISA technique for the serodiagnosis of CVL. Secondly, vaccines composed of the recombinant protein and both chemically synthesized peptides, combined with saponin as an adjuvant; were administered subcutaneously into BALB/c mice. The cellular and humoral responses generated by vaccination were evaluated. In addition, the parasite burden and immune response were studied 10 weeks after L. infantum infection. Results: The rLiHyV protein was recognized by antibodies of VL dogs. No cross-reactivity was obtained with sera from dogs vaccinated with a Brazilian commercial vaccine, with sera from animals infected with Trypanosoma cruzi, Babesia canis and Ehrlichia canis, or those from non-infected animals living in an endemic area for leishmaniasis. After challenge with L. infantum, spleen cells of BALB/c mice vaccinated with rLiHyV/saponin stimulated with parasite antigens showed a higher production of IFN-γ, IL-12 and GM-CSF, than the same cells obtained from mice vaccinated with the individual peptides, or mice from control (inoculated with saline or saponin) groups. This Th1-type cellular response observed in rLiHyV/saponin vaccinated mice was accompanied by the induction of parasite-specific IgG2a isotype antibodies. Animals immunized with rLiHyV/saponin showed significant reductions in the parasite burden in the liver, spleen, bone marrow and in the lymph nodes draining the paws relative to control mice. Conclusions: The present study showed for the first time that the L. infantum LiHyV protein could be considered as a vaccine candidate against L. infantum infection, as well as a diagnostic marker for CVL.This work was supported by grants from Instituto Nacional de Ciência e Tecnologia em Nanobiofarmacêutica (INCT-Nanobiofar), FAPEMIG (CBB-APQ-00819-12), and CNPq (APQ-472090/2011-9, RHAE-456287/2012-4, APQ-482976/2012-8, and APQ-488237/2013-0). MACF is a grant recipient of FAPEMIG/CAPES. EAFC and APF are grant recipient of CNPq.Peer Reviewe

    A Leishmania-specific hypothetical protein expressed in both promastigote and amastigote stages of Leishmania infantum employed for the serodiagnosis of, and as a vaccine candidate against, visceral leishmaniasis

    Get PDF
    Background: LiHyV is an antigenic hypothetical protein present in both promastigote and amastigote stages of Leishmania infantum, which was recently identified by an immunoproteomic approach. A recombinant version of this protein (rLiHyV) was evaluated as a diagnostic marker for canine VL (CVL). In addition, the prophylactic efficacy of the rLiHyV protein, and two of its CD8+ T cell epitopes, has been analyzed in a murine model of visceral leishmaniasis (VL). Methods: Initially, the rLiHyV protein was evaluated by an ELISA technique for the serodiagnosis of CVL. Secondly, vaccines composed of the recombinant protein and both chemically synthesized peptides, combined with saponin as an adjuvant; were administered subcutaneously into BALB/c mice. The cellular and humoral responses generated by vaccination were evaluated. In addition, the parasite burden and immune response were studied 10 weeks after L. infantum infection. Results: The rLiHyV protein was recognized by antibodies of VL dogs. No cross-reactivity was obtained with sera from dogs vaccinated with a Brazilian commercial vaccine, with sera from animals infected with Trypanosoma cruzi, Babesia canis and Ehrlichia canis, or those from non-infected animals living in an endemic area for leishmaniasis. After challenge with L. infantum, spleen cells of BALB/c mice vaccinated with rLiHyV/saponin stimulated with parasite antigens showed a higher production of IFN-γ, IL-12 and GM-CSF, than the same cells obtained from mice vaccinated with the individual peptides, or mice from control (inoculated with saline or saponin) groups. This Th1-type cellular response observed in rLiHyV/saponin vaccinated mice was accompanied by the induction of parasite-specific IgG2a isotype antibodies. Animals immunized with rLiHyV/saponin showed significant reductions in the parasite burden in the liver, spleen, bone marrow and in the lymph nodes draining the paws relative to control mice. Conclusions: The present study showed for the first time that the L. infantum LiHyV protein could be considered as a vaccine candidate against L. infantum infection, as well as a diagnostic marker for CVLThis work was supported by grants from Instituto Nacional de Ciência e Tecnologia em Nanobiofarmacêutica (INCT-Nanobiofar), FAPEMIG (CBB-APQ-00819-12), and CNPq (APQ-472090/2011-9, RHAE-456287/2012-4, APQ-482976/2012-8, and APQ-488237/2013-0). MACF is a grant recipient of FAPEMIG/CAPES. EAFC and APF are grant recipient of CNP

    An optimized nanoparticle delivery system based on chitosan and chondroitin sulfate molecules reduces the toxicity of amphotericin B and is effective in treating tegumentary leishmaniasis

    Full text link
    Amphotericin B (AmpB) is active against leishmaniasis, but its use is hampered due to its high toxicity observed in patients. In this study, a nanoparticles-delivery system for AmpB (NQC-AmpB), containing chitosan and chondroitin sulfate molecules, was evaluated in BALB/c mice against Leishmania amazonensis. An in vivo biodistribution study, including biochemical and toxicological evaluations, was performed to evaluate the toxicity of AmpB. Nanoparticles were radiolabeled with technetium-99m and injected in mice. The products presented a similar biodistribution in the liver, spleen, and kidneys of the animals. Free AmpB induced alterations in the body weight of the mice, which, in the biochemical analysis, indicated hepatic and renal injury, as well as morphological damage to the kidneys of the animals. In general, no significant organic alteration was observed in the animals treated with NQC-AmpB. Mice were infected with L. amazonensis and treated with the nanoparticles or free AmpB; then, parasitological and immunological analyses were performed. The NQC-AmpB group, as compared to the control groups, presented significant reductions in the lesion size and in the parasite burden in all evaluated organs. These animals presented significantly higher levels of IFN-γ and IL-12, and low levels of IL-4 and IL-10, when compared to the control groups. The NQC-AmpB system was effective in reducing the infection in the animals, and proved to be effective in diminishing the toxicity evoked by AmpB, which was observed when it was administered alone. In conclusion, NQC-AmpB could be considered a viable possibility for future studies in the treatment of leishmaniasisThis work was supported by grants from Pró-Reitoria de Pesquisa from UFMG (Edital 01/2014), Instituto Nacional de Ciência e Tecnologia em Nano-biofarmacêutica (INCT-Nanobiofar), FAPEMIG (CBB-APQ-00496-11 and CBB-APQ-00819-12), and CNPq (APQ-472090/2011-9 and APQ-482976/2012-8). MACF is a grant recipient of FAPEMIG/CAPES. EAFC, VNC, and AAGF are grant recipients of CNPq. Eduardo AF Coelho and André AG Faraco are co-senior authors of this stud

    Sensitive and specific serodiagnosis of Leishmania infantum infection in dogs by using peptides selected from hypothetical proteins identified by an immunoproteomic approach

    Full text link
    In Brazil, the percentage of infected dogs living in areas where canine visceral leishmaniasis (CVL) is endemic ranges from 10 to 62%; however, the prevalence of infection in dogs is probably higher than figures reported from serological studies. In addition, problems with the occurrence of false-positive or false-negative results in the serodiagnosis of CVL have been reported. The present work analyzed the potential of synthetic peptides mapped from hypothetical proteins for improvement of the serodiagnosis of Leishmania infantum infection in dogs. From 26 identified leishmanial proteins, eight were selected, considering that no homologies between these proteins and others from trypanosomatide sequence databases were encountered. The sequences of these proteins were mapped to identify linear B-cell epitopes, and 17 peptides were synthesized and tested in enzyme-linked immunosorbent assays (ELISAs) for the serodiagnosis of L. infantum infection in dogs. Of these, three exhibited sensitivity and specificity values higher than 75% and 90%, respectively, to differentiate L. infantum-infected animals from Trypanosoma cruziinfected animals and healthy animals. Soluble Leishmania antigen (SLA) showed poor sensitivity (4%) and specificity (36%) to differentiate L. infantum-infected dogs from healthy and T. cruzi-infected dogs. Lastly, the three selected peptides were combined in different mixtures and higher sensitivity and specificity values were obtained, even when sera from T. cruzi-infected dogs were used. The study’s findings suggest that these three peptides can constitute a potential tool for more sensitive and specific serodiagnosis of L. infantum infection in dogsThis work was supported by grants from the Pró-Reitoria de Pesquisa from UFMG (Edital 07/2012), Instituto Nacional de Ciência e Tecnologia em Nano-biofarmacêutica (INCT-NANOBIOFAR, Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) (CBB-APQ-02364-08, CBB-APQ-00356-10, CBB-APQ-00496-11, and CBB-APQ-00819-12), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (APQ-472090/2011-9), and the Instituto Nacional de Ciência e Tecnologia em Vacinas (INCT-V). E.A.F.C. and A.P.F. are CNPq grant recipients. M.A.C.-F. is a FAPEMIG/CAPES grant recipient. This study was supported in Spain, in part, by grants from the Ministerio de Ciencia e Innovación (FIS/PI1100095)

    Recent updates and perspectives on approaches for the development of vaccines against visceral leishmaniasis

    Full text link
    All rights reserved. Visceral leishmaniasis (VL) is one of the most important tropical diseases worldwide. Although chemotherapy has been widely used to treat this disease, problems related to the development of parasite resistance and side effects associated with the compounds used have been noted. Hence, alternative approaches for VL control are desirable. Some methods, such as vector control and culling of infected dogs, are insufficiently effective, with the latter not ethically recommended. The development of vaccines to prevent VL is a feasible and desirable measure for disease control, for example, some vaccines designed to protect dogs against VL have recently been brought to market. These vaccines are based on the combination of parasite fractions or recombinant proteins with adjuvants that are able to induce cellular immune responses, however, their partial efficacy and the absence of a vaccine to protect against human leishmaniasis underline the need for characterization of new vaccine candidates. This review presents recent advances in control measures for VL based on vaccine development, describing extensively studied antigens, as well as new antigenic proteins recently identified using immuno-proteomic techniquesThis work was supported by grants from Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Rede Nanobiotec/Brasil-Universidade Federal de Uberlândia/CAPES, PRONEX-FAPEMIG (APQ-01019-09), FAPEMIG (CBB-APQ-00819-12 and CBB-APQ-01778-2014), and CNPq (APQ-482976/2012-8, APQ-488237/2013-0, and APQ-467640/2014-9). EAFC and LRG are recipients of the grant from CNPq. MACF is the recipient of grants from FAPEMIG/CAPE
    corecore