231 research outputs found

    Extreme Antimicrobial Peptide and Polymyxin B Resistance in the Genus Burkholderia

    Get PDF
    Cationic antimicrobial peptides and polymyxins are a group of naturally occurring antibiotics that can also possess immunomodulatory activities. They are considered a new source of antibiotics for treating infections by bacteria that are resistant to conventional antibiotics. Members of the genus Burkholderia, which includes various human pathogens, are inherently resistant to antimicrobial peptides. The resistance is several orders of magnitude higher than that of other Gram-negative bacteria such as Escherichia coli, Salmonella enterica, or Pseudomonas aeruginosa. This review summarizes our current understanding of antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. These bacteria possess major and minor resistance mechanisms that will be described in detail. Recent studies have revealed that many other emerging Gram-negative opportunistic pathogens may also be inherently resistant to antimicrobial peptides and polymyxins and we propose that Burkholderia sp. are a model system to investigate the molecular basis of the resistance in extremely resistant bacteria. Understanding resistance in these types of bacteria will be important if antimicrobial peptides come to be used regularly for the treatment of infections by susceptible bacteria because this may lead to increased resistance in the species that are currently susceptible and may also open up new niches for opportunistic pathogens with high inherent resistance

    Antimicrobial Heteroresistance: an Emerging Field in Need of Clarity

    Get PDF
    “Heteroresistance” describes a phenomenon where subpopulations of seemingly isogenic bacteria exhibit a range of susceptibilities to a particular antibiotic. Unfortunately, a lack of standard methods to determine heteroresistance has led to inappropriate use of this term. Heteroresistance has been recognized since at least 1947 and occurs in Gram-positive and Gram-negative bacteria. Its clinical relevance may be considerable, since more resistant subpopulations may be selected during antimicrobial therapy. However, the use of nonstandard methods to define heteroresistance, which are costly and involve considerable labor and resources, precludes evaluating the clinical magnitude and severity of this phenomenon. We review the available literature on antibiotic heteroresistance and propose recommendations for definitions and determination criteria for heteroresistant bacteria. This will help in assessing the global clinical impact of heteroresistance and developing uniform guidelines for improved therapeutic outcomes

    Diverse pathogenicity of Burkholderia cepacia complex strains in the Caenorhabditis elegans host model

    Get PDF
    A fast screening method was developed to assess the pathogenicity of a diverse collection of environmental and clinical Burkholderia cepacia complex isolates in the nematode Caenorhabditis elegans. The method was validated by comparison with the standard slow-killing assay. We observed that the pathogenicity of B. cepacia complex isolates in C. elegans was strain-dependent but species-independent. The wide range of observed pathogenic phenotypes agrees with the high degree of phenotypic variation among species of the B. cepacia complex and suggests that the taxonomic classification of a given strain within the complex cannot predict pathogenicit

    Assessment of three Resistance-Nodulation-Cell Division drug efflux transporters of Burkholderia cenocepacia in intrinsic antibiotic resistance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Burkholderia cenocepacia </it>are opportunistic Gram-negative bacteria that can cause chronic pulmonary infections in patients with cystic fibrosis. These bacteria demonstrate a high-level of intrinsic antibiotic resistance to most clinically useful antibiotics complicating treatment. We previously identified 14 genes encoding putative Resistance-Nodulation-Cell Division (RND) efflux pumps in the genome of <it>B. cenocepacia </it>J2315, but the contribution of these pumps to the intrinsic drug resistance of this bacterium remains unclear.</p> <p>Results</p> <p>To investigate the contribution of efflux pumps to intrinsic drug resistance of <it>B. cenocepacia </it>J2315, we deleted 3 operons encoding the putative RND transporters RND-1, RND-3, and RND-4 containing the genes <it>BCAS0591</it>-<it>BCAS0593</it>, <it>BCAL1674</it>-<it>BCAL1676</it>, and <it>BCAL2822</it>-<it>BCAL2820</it>. Each deletion included the genes encoding the RND transporter itself and those encoding predicted periplasmic proteins and outer membrane pores. In addition, the deletion of <it>rnd-3 </it>also included <it>BCAL1672</it>, encoding a putative TetR regulator. The <it>B. cenocepacia rnd-3 </it>and <it>rnd-4 </it>mutants demonstrated increased sensitivity to inhibitory compounds, suggesting an involvement of these proteins in drug resistance. Moreover, the <it>rnd-3 </it>and <it>rnd-4 </it>mutants demonstrated reduced accumulation of N-acyl homoserine lactones in the growth medium. In contrast, deletion of the <it>rnd-1 </it>operon had no detectable phenotypes under the conditions assayed.</p> <p>Conclusion</p> <p>Two of the three inactivated RND efflux pumps in <it>B. cenocepacia </it>J2315 contribute to the high level of intrinsic resistance of this strain to some antibiotics and other inhibitory compounds. Furthermore, these efflux systems also mediate accumulation in the growth medium of quorum sensing molecules that have been shown to contribute to infection. A systematic study of RND efflux systems in <it>B. cenocepacia </it>is required to provide a full picture of intrinsic antibiotic resistance in this opportunistic bacterium.</p

    Antibiotic capture by bacterial lipocalins uncovers an extracellular mechanism of intrinsic antibiotic resistance

    Get PDF
    15 p.-6 fig.The potential for microbes to overcome antibiotics of different classes before they reach bacterial cells is largely unexplored. Here we show that a soluble bacterial lipocalin produced by Burkholderia cenocepacia upon exposure to sublethal antibiotic concentrations increases resistance to diverse antibiotics in vitro and in vivo. These phenotypes were recapitulated by heterologous expression in B. cenocepacia of lipocalin genes from Pseudomonas aeruginosa, Mycobacterium tuberculosis,and methicillin-resistant Staphylococcus aureus. Purified lipocalin bound different classes of bactericidal antibiotics and contributed to bacterial survival in vivo. Experimental and X-ray crystal structure-guided computational studies revealed that lipocalins counteract antibiotic action by capturing antibiotics in the extracellular space. We also demonstrated that fat-soluble vitamins prevent antibiotic capture by binding bacterial lipocalin with higher affinity than antibiotics. Therefore, bacterial lipocalins contribute to antimicrobial resistance by capturing diverse antibiotics in the extracellular space at the site of infection, which can be counteracted by known vitamins.This work was funded by grants from Cystic Fibrosis Canada, the European Commission,a Marie Curie Career Integration grant (projects 618095, NONANTIRES), and the Infection and Immunity Translational Research Group, Northern Ireland HSC to M.A.V.;the Spanish Ministry for Economy and Competitiveness (MINECO CTQ2011-22724 and CTQ2014-57141-R), European Commission Marie Curie grants GLYCOPHARM FP7-PITNGA-2012-317297 and TOLLerant H2020-MSC-ETN-642157 to S.M.S.; and Canadian Institutes of Health research grant MOP-49597 and a grant from Cystic Fibrosis Canada to M.E.P.M.Peer reviewe

    The temperate Burkholderia phage AP3 of the Peduovirinae shows efficient antimicrobial activity against B. cenocepacia of the IIIA lineage

    Get PDF
    Burkholderia phage AP3 (vB_BceM_AP3) is a temperate virus of the Myoviridae and the Peduovirinae subfamily (P2likevirus genus). This phage specifically infects multidrug-resistant clinical Burkholderia cenocepacia lineage IIIA strains commonly isolated from cystic fibrosis patients. AP3 exhibits high pairwise nucleotide identity (61.7 %) to Burkholderia phage KS5, specific to the same B. cenocepacia host, and has 46.7–49.5 % identity to phages infecting other species of Burkholderia. The lysis cassette of these related phages has a similar organization (putative antiholin, putative holin, endolysin, and spanins) and shows 29–98 % homology between specific lysis genes, in contrast to Enterobacteria phage P2, the hallmark phage of this genus. The AP3 and KS5 lysis genes have conserved locations and high amino acid sequence similarity. The AP3 bacteriophage particles remain infective up to 5 h at pH 4–10 and are stable at 60 °C for 30 min, but are sensitive to chloroform, with no remaining infective particles after 24 h of treatment. AP3 lysogeny can occur by stable genomic integration and by pseudo-lysogeny. The lysogenic bacterial mutants did not exhibit any significant changes in virulence compared to wild-type host strain when tested in the Galleria mellonella moth wax model. Moreover, AP3 treatment of larvae infected with B. cenocepacia revealed a significant increase (P < 0.0001) in larvae survival in comparison to AP3-untreated infected larvae. AP3 showed robust lytic activity, as evidenced by its broad host range, the absence of increased virulence in lysogenic isolates, the lack of bacterial gene disruption conditioned by bacterial tRNA downstream integration site, and the absence of detected toxin sequences. These data suggest that the AP3 phage is a promising potent agent against bacteria belonging to the most common B. cenocepacia IIIA lineage strains
    corecore