117 research outputs found

    Polymorphism in two merozoite surface proteins of Plasmodium falciparum isolates from Gabon

    Get PDF
    BACKGROUND: Plasmodium falciparum antigenic diversity and polymorphism confuses the issue of antimalarial vaccine development. Merozoite surface protein (MSP)-1 and -2 are two highly polymorphic vaccine candidates. Characterisation of their precise polymorphism in endemic regions may facilitate the design of an effective vaccine. METHODS: Isolates obtained in 52 Gabonese children presenting with uncomplicated malaria were genotyped by nested-PCR of msp-1 block 2, and msp-2 block 3, to analyze both parasite population polymorphism and clone fluctuations. RESULTS: Twenty-five and 19 different alleles were respectively obtained for msp-1 and msp-2 loci, the RO33 family of msp-1 being poorly polymorphic. Four cases of non-random distribution of alleles were reported of the FC27, and/or 3D7 families of msp-2. All but two isolates were composed of more than one genotype, and the multiplicity of infection (MOI) was 4.0. Neither parasite density nor age was related to MOI. Clone fluctuations were studied for ten subjects who were sampled again at reappearance of parasites in blood. Disappearance and reappearance of alleles were observed following treatment, suggesting difficulties in assessing polymorphism and in distinguishing reinfection from recrudescence. CONCLUSION: P. falciparum polymorphism is extensive in Southeast Gabon, and most of infections are composed of multiple clones. The fluctuation of clones contributes to parasite diversity

    Placental malaria : decreased transfer of maternal antibodies directed to Plasmodium falciparum and impact on the incidence of febrile infections in infants

    Get PDF
    The efficacy of mother-to-child placental transfer of antibodies specific to malaria blood stage antigens was investigated in the context of placental malaria infection, taking into account IgG specificity and maternal hypergammaglobulinemia. The impact of the resulting maternal antibody transfer on infections in infants up to the age of 6 months was also explored. This study showed that i) placental malaria was associated with a reduced placental transfer of total and specific IgG, ii) antibody placental transfer varied according to IgG specificity and iii) cord blood malaria IgG levels were similar in infants born to mothers with or without placental malaria. The number of malaria infections was negatively associated with maternal age, whereas it was not associated with the transfer of any malaria-specific IgG from the mother to the fetus. These results suggest that i) malaria-specific IgG may serve as a marker of maternal exposure but not as a useful marker of infant protection from malaria and ii) increasing maternal age contributes to diminishing febrile infections diagnosed in infants, perhaps by means of the transmission of an effective antibody response

    First malaria infections in a cohort of infants in Benin: biological, environmental and genetic determinants. Description of the study site, population methods and preliminary results

    Get PDF
    Objectives: Malaria infection of the placenta during pregnancy was found to be associated with infant susceptibility to malaria. Other factors such as the intensity of malaria transmission and the nutritional status of the child might also play a role, which has not been adequately taken into account in previous studies. The aim of this study was to assess precisely the parts played by environmental, nutritional and biological determinants in first malaria infections, with a special interest in the role of placental infection. The objective of this paper is not to present final results but to outline the rationale of the study, to describe the methods used and to report baseline data. Design: A cohort of infants followed with a parasitological (symptomatic and asymptomatic parasitaemia) and nutritional follow-up from birth to 18 months. Ecological, entomological and behavioural data were collected along the duration of the study. Setting: A rural area in Benin with two seasonal peaks in malaria transmission. Participants: 656 infants of women willing to participate in the study, giving birth in one of the three maternity clinics and living in one of the nine villages of the study area. Primary Outcome Measures: The time and frequency of first malaria parasitaemias in infants, according to Plasmodium falciparum infection of the placenta. Results: 11% of mothers had a malaria-infected placenta at delivery. Mosquito catches made every 6 weeks in the area showed an average annual P falciparum entomological inoculation rate of 15.5, with important time and space variations depending on villages. Similarly, the distribution of rainfalls, maximal during the two rainy seasons, was heterogeneous over the area. Conclusions: Considering the multidisciplinary approach of all factors potentially influencing the malaria status of newborn babies, this study should bring evidence on the implication of placental malaria in the occurrence of first malaria infections in infants

    The humoral response to Plasmodium falciparum VarO rosetting variant and its association with protection against malaria in Beninese children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The capacity of <it>Plasmodium falciparum</it>-infected erythrocytes to bind uninfected erythrocytes (rosetting) is associated with severe malaria in African children. Rosetting is mediated by a subset of the variant surface antigens PfEMP1 targeted by protective antibody responses. Analysis of the response to rosette-forming parasites and their PfEMP1 adhesive domains is essential for understanding the acquisition of protection against severe malaria. To this end, the antibody response to a rosetting variant was analysed in children recruited with severe or uncomplicated malaria or asymptomatic <it>P. falciparum </it>infection.</p> <p>Methods</p> <p>Serum was collected from Beninese children with severe malaria, uncomplicated malaria or <it>P. falciparum </it>asymptomatic infection (N = 65, 37 and 52, respectively) and from immune adults (N = 30) living in the area. Infected erythrocyte surface-reactive IgG, rosette disrupting antibodies and IgG to the parasite crude extract were analysed using the single variant Palo Alto VarO-infected line. IgG, IgG1 and IgG3 to PfEMP1-varO-derived NTS-DBL1α<sub>1</sub>, CIDRγ and DBL2βC2 recombinant domains were analysed by ELISA. Antibody responses were compared in the clinical groups. Stability of the response was studied using a blood sampling collected 14 months later from asymptomatic children.</p> <p>Results</p> <p>Seroprevalence of erythrocyte surface-reactive IgG was high in adults (100%) and asymptomatic children (92.3%) but low in children with severe or uncomplicated malaria (26.1% and 37.8%, respectively). The IgG, IgG1 and IgG3 antibody responses to the varO-derived PfEMP1 domains were significantly higher in asymptomatic children than in children with clinical malaria in a multivariate analysis correcting for age and parasite density at enrolment. They were essentially stable, although levels tended to decrease with time. VarO-surface reactivity correlated positively with IgG reactivity to the rosetting domain varO-NTS-DBL1α<sub>1</sub>. None of the children sera, including those with surface-reactive antibodies possessed anti-VarO-rosetting activity, and few adults had rosette-disrupting antibodies.</p> <p>Conclusions</p> <p>Children with severe and uncomplicated malaria had similar responses. The higher prevalence and level of VarO-reactive antibodies in asymptomatic children compared to children with malaria is consistent with a protective role for anti-VarO antibodies against clinical falciparum malaria. The mechanism of such protection seems independent of rosette-disruption, suggesting that the cytophilic properties of antibodies come into play.</p

    Immunoglobulin response to Plasmodium falciparum RESA proteins in uncomplicated and severe malaria

    Get PDF
    Background: The three members of the ring-infected erythrocyte surface antigen (RESA) proteins family share high sequence homologies, which impair the detection and assignment to one or another protein of some pathogenic processes inherent to Plasmodium falciparum malaria. The present study was intended to determine if the antibody and inflammatory responses of children living in a malaria-endemic area varied depending on the RESA-1, RESA-2 or RESA-3 proteins and the severity of the disease, two groups of severe and uncomplicated malaria cases being considered. Methods: Two synthetic peptides representing predicted B cell epitopes were designed per RESA protein, all located outside of the 3' and 5' repetition blocks, in order to allow an antibody detection specific of each member of the family. Recombinant rRESA-1B and rRESA-3B proteins were also engineered. Two groups of Beninese children admitted to hospital in 2009 for either uncomplicated or severe malaria were compared for their plasma levels of IgG specifically recognizing each recombinant RESA protein or synthetic peptide, and for their plasma inflammatory cytokine levels (IFN-gamma, TNF-alpha and IL-10), taking into account host and parasite genetic factors. Results: The absence of IgG cross-reactivity between rRESA proteins and their protein carrier as well as between each RESA peptide and a non-epitopic RESA control peptide validated the use of the engineered recombinant proteins and peptides for the measurement of plasma IgG. Taking into account age, fever duration and parasitaemia, a multiple logistic regression performed on children clustered according to their antibody responses' profiles concluded to an increased risk of severe malaria for P2 (representative of RESA-1) responders (P = 0.007). Increased IL-10 plasma levels were found in children harbouring multiclonal P. falciparum infections on the basis of the T1526G resa2 gene polymorphism (P = 0.004). Conclusions: This study provided novel tools to dissect the seroreactivity against the three members of the RESA protein family and to describe its relation to protection against malaria. It suggested the measurement of plasma antibodies raised against specific peptides to serve as predictive immunologic markers for disease severity. Lastly, it reinforced previous observations linking the T1526G resa2 gene mutation to severe malaria

    Acquisition of natural humoral immunity to <i>P. falciparum</i> in early life in Benin:impact of clinical, environmental and host factors

    Get PDF
    To our knowledge, effects of age, placental malaria infection, infections during follow-up, nutritional habits, sickle-cell trait and individual exposure to Anopheles bites were never explored together in a study focusing on the acquisition of malaria antibody responses among infants living in endemic areas. Five hundred and sixty-seven Beninese infants were weekly followed-up from birth to 18 months of age. Immunoglobulin G (IgG), IgG1 and IgG3 specific for 5 malaria antigens were measured every 3 months. A linear mixed model was used to analyze the effect of each variable on the acquisition of antimalarial antibodies in 6- to 18-month old infants in univariate and multivariate analyses. Placental malaria, nutrition intakes and sickle-cell trait did not influence the infant antibody levels to P. falciparum antigens. In contrary, age, malaria antibody levels at birth, previous and present malaria infections as well as exposure to Anopheles bites were significantly associated with the natural acquisition of malaria antibodies in 6- to 18-month old Beninese infants. This study highlighted inescapable factors to consider simultaneously in an immuno-epidemiological study or a vaccine trial in early life

    Population Genomics of the Immune Evasion (var) Genes of Plasmodium falciparum

    Get PDF
    Var genes encode the major surface antigen (PfEMP1) of the blood stages of the human malaria parasite Plasmodium falciparum. Differential expression of up to 60 diverse var genes in each parasite genome underlies immune evasion. We compared the diversity of the DBLα domain of var genes sampled from 30 parasite isolates from a malaria endemic area of Papua New Guinea (PNG) and 59 from widespread geographic origins (global). Overall, we obtained over 8,000 quality-controlled DBLα sequences. Within our sampling frame, the global population had a total of 895 distinct DBLα “types” and negligible overlap among repertoires. This indicated that var gene diversity on a global scale is so immense that many genomes would need to be sequenced to capture its true extent. In contrast, we found a much lower diversity in PNG of 185 DBLα types, with an average of approximately 7% overlap among repertoires. While we identify marked geographic structuring, nearly 40% of types identified in PNG were also found in samples from different countries showing a cosmopolitan distribution for much of the diversity. We also present evidence to suggest that recombination plays a key role in maintaining the unprecedented levels of polymorphism found in these immune evasion genes. This population genomic framework provides a cost effective molecular epidemiological tool to rapidly explore the geographic diversity of var genes
    corecore