1,305 research outputs found
Magnetic-Field-Induced 4f-Octupole in CeB6 Probed by Resonant X-ray Diffraction
CeB6, a typical Gamma_8-quartet system, exhibits a mysterious
antiferroquadrupolar ordered phase in magnetic fields, which is considered as
originating from the T_{xyz}-type magnetic octupole moment induced by the
field. By resonant x-ray diffraction in magnetic fields, we have verified that
the T_{xyz}-type octupole is indeed induced in the 4f-orbital of Ce with a
propagation vector (1/2, 1/2, 1/2), thereby supporting the theory. We observed
an asymmetric field dependence of the intensity for an electric quadrupole (E2)
resonance when the field was reversed, and extracted a field dependence of the
octupole by utilizing the interference with an electric dipole (E1) resonance.
The result is in good agreement with that of the NMR-line splitting, which
reflects the transferred hyperfine field at the Boron nucleus from the
anisotropic spin distribution of Ce with an O_{xy}-type quadrupole. The
field-reversal method used in the present study opens up the possibility of
being widely applied to other multipole ordering systems such as NpO2,
Ce_{x}La_{1-x}B_{6}, SmRu_{4}P_{12}, and so on.Comment: 5 pages, 4 figures, submitte
Evidence for short-range antiferromagnetic fluctuations in Kondo-insulating YbB12
The spin dynamics of mixed-valence YbB12 has been studied by inelastic
neutron scattering on a high-quality single crystal. In the Kondo-insulating
regime realized at low temperature, the spectra exhibit a spin-gap structure
with two sharp, dispersive, in-gap excitations at E = 14.5 and approximately 20
meV. The lower mode is shown to be associated with short-range correlations
near the antiferromagnetic wave vector q0 = (1/2, 1/2, 1/2). Its properties are
in overall agreement with those expected for a "spin exciton'' branch in an
indirect hybridization gap semiconductor.Comment: 4 pages, 4 figures ; submitted to Physical Review Letter
On the porosity of barrier layers
Barrier layers are defined as the layer between the pycnocline and the thermocline when the latter are different as a result of salinity stratification. We present a revisited 2-degree resolution global climatology of monthly mean oceanic Barrier Layer (BL) thickness first proposed by de Boyer Montégut et al. (2007). In addition to using an extended data set, we present a modified computation method that addresses the observed porosity of BLs. We name porosity the fact that barrier layers distribution can, in some areas, be very uneven regarding the space and time scales that are considered. This implies an intermittent alteration of air-sea exchanges by the BL. Therefore, it may have important consequences for the climatic impact of BLs. Differences between the two computation methods are small for robust BLs that are formed by large-scale processes. However, the former approach can significantly underestimate the thickness of short and/or localized barrier layers. This is especially the case for barrier layers formed by mesoscale mechanisms (under the intertropical convergence zone for example and along western boundary currents) and equatorward of the sea surface salinity subtropical maxima. Complete characterisation of regional BL dynamics therefore requires a description of the robustness of BL distribution to assess the overall impact of BLs on the process of heat exchange between the ocean interior and the atmosphere
Spontaneous deformation of the Fermi surface due to strong correlation in the two-dimensional t-J model
Fermi surface of the two-dimensional t-J model is studied using the
variational Monte Carlo method. We study the Gutzwiller projected d-wave
superconducting state with an additional variational parameter t'_v
corresponding to the next-nearest neighbor hopping term. It is found that the
finite t'_v<0 gives the lowest variational energy in the wide range of
hole-doping rates. The obtained momentum distribution function shows that the
Fermi surface deforms spontaneously. It is also shown that the van Hove
singularity is always located very close to the Fermi energy. Using the
Gutzwiller approximation, we show that this spontaneous deformation is due to
the Gutzwiller projection operator or the strong correlation.Comment: 4 pages, 3 eps figures, revte
Pressure Evolution of the Magnetic Field induced Ferromagnetic Fluctuation through the Pseudo-Metamagnetism of CeRu2Si2
Resistivity measurements performed under pressure in the paramagnetic ground
state of CeRu2Si2 are reported. They demonstrate that the relative change of
effective mass through the pseudo metamagnetic transition is invariant under
pressure. The results are compared with the first order metamagnetic transition
due to the antiferromagnetism of Ce0.9La0.1Ru2Si2 which corresponds to the
"negative" pressure of CeRu2Si2 by volume expansion. Finally, we describe the
link between the spin-depairing of quasiparticles on CeRu2Si2 and that of
Cooper pairs on the unconventional heavy fermion superconductor CeCoIn5.Comment: 5 pages, 6 figures, accepted for publication in J. Phys. Soc. Jp
Magnetic order and multipole interactions in CexPr1-xB6 solid solutions
Magnetic ordering phenomena in CexPr1-xB6 solid solutions have been studied
using both powder and single-crystal neutron diffraction. A variety of magnetic
structures are observed depending on temperature and Ce concentration. Over a
broad composition range (x 0.7), Pr-Pr interactions play a dominant role,
giving rise to incommensurate structures with wave vectors of the form
k{IC1}=(1/4-delta, 1/4, 1/2) or k{IC2}=(1/4-delta, 1/4-delta, 1/2). The
crossover to a CeB6-like regime takes place near x = 0.7-0.8. For the latter
composition, the antiferroquadrupolar phase transition observed in transport
measurements precedes the onset, at lower temperature, of a commensurate
magnetic order similar to that existing in CeB6. However, unlike in the pure
compound, an incommensurate magnetic order is formed at even higher temperature
and persists in the antiferroquadrupolar phase down to the lock-in transition.
These results are shown to reflect the interplay between various type of dipole
exchange and higher multipole interactions in this series of compounds.Comment: Abstract of submission changed to get rid of LaTeX code Minor
differences exist between this version and that published in PRB (corrections
introduced by publisher
- …