1,620 research outputs found
Magnetic-Field-Induced 4f-Octupole in CeB6 Probed by Resonant X-ray Diffraction
CeB6, a typical Gamma_8-quartet system, exhibits a mysterious
antiferroquadrupolar ordered phase in magnetic fields, which is considered as
originating from the T_{xyz}-type magnetic octupole moment induced by the
field. By resonant x-ray diffraction in magnetic fields, we have verified that
the T_{xyz}-type octupole is indeed induced in the 4f-orbital of Ce with a
propagation vector (1/2, 1/2, 1/2), thereby supporting the theory. We observed
an asymmetric field dependence of the intensity for an electric quadrupole (E2)
resonance when the field was reversed, and extracted a field dependence of the
octupole by utilizing the interference with an electric dipole (E1) resonance.
The result is in good agreement with that of the NMR-line splitting, which
reflects the transferred hyperfine field at the Boron nucleus from the
anisotropic spin distribution of Ce with an O_{xy}-type quadrupole. The
field-reversal method used in the present study opens up the possibility of
being widely applied to other multipole ordering systems such as NpO2,
Ce_{x}La_{1-x}B_{6}, SmRu_{4}P_{12}, and so on.Comment: 5 pages, 4 figures, submitte
Pressure Evolution of the Magnetic Field induced Ferromagnetic Fluctuation through the Pseudo-Metamagnetism of CeRu2Si2
Resistivity measurements performed under pressure in the paramagnetic ground
state of CeRu2Si2 are reported. They demonstrate that the relative change of
effective mass through the pseudo metamagnetic transition is invariant under
pressure. The results are compared with the first order metamagnetic transition
due to the antiferromagnetism of Ce0.9La0.1Ru2Si2 which corresponds to the
"negative" pressure of CeRu2Si2 by volume expansion. Finally, we describe the
link between the spin-depairing of quasiparticles on CeRu2Si2 and that of
Cooper pairs on the unconventional heavy fermion superconductor CeCoIn5.Comment: 5 pages, 6 figures, accepted for publication in J. Phys. Soc. Jp
On the porosity of barrier layers
Barrier layers are defined as the layer between the pycnocline and the thermocline when the latter are different as a result of salinity stratification. We present a revisited 2-degree resolution global climatology of monthly mean oceanic Barrier Layer (BL) thickness first proposed by de Boyer Montégut et al. (2007). In addition to using an extended data set, we present a modified computation method that addresses the observed porosity of BLs. We name porosity the fact that barrier layers distribution can, in some areas, be very uneven regarding the space and time scales that are considered. This implies an intermittent alteration of air-sea exchanges by the BL. Therefore, it may have important consequences for the climatic impact of BLs. Differences between the two computation methods are small for robust BLs that are formed by large-scale processes. However, the former approach can significantly underestimate the thickness of short and/or localized barrier layers. This is especially the case for barrier layers formed by mesoscale mechanisms (under the intertropical convergence zone for example and along western boundary currents) and equatorward of the sea surface salinity subtropical maxima. Complete characterisation of regional BL dynamics therefore requires a description of the robustness of BL distribution to assess the overall impact of BLs on the process of heat exchange between the ocean interior and the atmosphere
High energy spin excitations in YBa_2 Cu_3 O_{6.5}
Inelastic neutron scattering has been used to obtain a comprehensive
description of the absolute dynamical spin susceptibility
of the underdoped superconducting cuprate YBa_2 Cu_3 O_{6.5} ()
over a wide range of energies and temperatures ( and ). Spin excitations of two different
symmetries (even and odd under exchange of two adjacent CuO_2 layers) are
observed which, surprisingly, are characterized by different temperature
dependences. The excitations show dispersive behavior at high energies.Comment: 15 pages, 5 figure
The effect of uniaxial pressure on the magnetic anomalies of the heavy-fermion metamagnet CeRu2Si2
The effect of uniaxial pressure (P_u) on the magnetic susceptibility (X),
magnetization (M), and magnetoresistance (MR) of the heavy-fermion metamagnet
CeRu2Si2 has been investigated. For the magnetic field along the tetragonal c
axis, it is found that characteristic physical quantities, i.e., the
temperature of the susceptibility maximum (T_max), the pagamagnetic Weiss
temperature (Q_p), 1/X at 2 K, and the magnetic field of the metamagnetic
anomaly (H_M), scale approximately linearly with P_u, indicating that all the
quantities are related to the same energy scale, probably of the Kondo
temperature. The increase (decrease) of the quantities for P_u || c axis (P_u
|| a axis) can be attributed to a decrease (increase) in the nearest Ce-Ru
distance. Consistently in MR and X, we observed a sign that the anisotropic
nature of the hybridization, which is believed to play an important role in the
metamagnetic anomaly, can be controlled by applying the uniaxial pressure.
PACS numbers: 75.20.Hr, 71.27.+a, 74.62.FjComment: 7 pages, ReVTeX, 6 EPS figures : Will appear in Phys. Rev.
Evidence for short-range antiferromagnetic fluctuations in Kondo-insulating YbB12
The spin dynamics of mixed-valence YbB12 has been studied by inelastic
neutron scattering on a high-quality single crystal. In the Kondo-insulating
regime realized at low temperature, the spectra exhibit a spin-gap structure
with two sharp, dispersive, in-gap excitations at E = 14.5 and approximately 20
meV. The lower mode is shown to be associated with short-range correlations
near the antiferromagnetic wave vector q0 = (1/2, 1/2, 1/2). Its properties are
in overall agreement with those expected for a "spin exciton'' branch in an
indirect hybridization gap semiconductor.Comment: 4 pages, 4 figures ; submitted to Physical Review Letter
Momentum-space structure of quasielastic spin fluctuations in Ce3Pd20Si6
Among heavy-fermion metals, CePdSi is one of the
heaviest-electron systems known to date. Here we used high-resolution neutron
spectroscopy to observe low-energy magnetic scattering from a single crystal of
this compound in the paramagnetic state. We investigated its temperature
dependence and distribution in momentum space, which was not accessible in
earlier measurements on polycrystalline samples. At low temperatures, a
quasielastic magnetic response with a half-width {\Gamma}=0.1 meV persists with
varying intensity all over the Brillouin zone. It forms a broad hump centered
at the (111) scattering vector, surrounded by minima of intensity at (002),
(220) and equivalent wave vectors. The momentum-space structure distinguishes
this signal from a simple crystal-field excitation at 0.31 meV, suggested
previously, and rather lets us ascribe it to short-range dynamical correlations
between the neighboring Ce ions, mediated by the itinerant heavy f-electrons
via the RKKY mechanism. With increasing temperature, the energy width of the
signal follows the conventional T law, {\Gamma}(T) =
{\Gamma} + A*T. The momentum-space symmetry of the
quasielastic response suggests that it stems from the simple-cubic Ce
sublattice occupying the 8c Wyckoff site, whereas the crystallographically
inequivalent 4a site remains magnetically silent in this material.Comment: 5 pages, 4 figure
- …
