5 research outputs found

    Phase stability of the AlxCrFeCoNi alloy system

    Get PDF
    The addition of Al to the A1 CrFeCoNi alloy has been shown to promote the formation of intermetallic phases, offering possibilities for the development of alloys with advantageous mechanical properties. However, despite numerous experimental investigations, there remain significant uncertainties as to the phase equilibria in this system particularly at temperatures below 1000°C. The present study makes a systematic assessment of the literature data pertaining to the equilibrium phases in alloys of the AlxCrFeCoNi system. Two alloys, with atomic ratios, x = 0.5 and 1.0, are then selected for further experimental investigation, following homogenisation (1200°C/72 h) and subsequent long-duration (1000 h) heat-treatments at 1000, 850 and 700°C. The Al0.5 alloy was found to be dual-phase A1 + B2 in the homogenised condition and following exposure at 1000°C but D8b phase precipitates developed following heat-treatment at the lower temperatures. In the Al1.0 alloy, B2, A2 and A1 phases were identified in the homogenised condition and at 1000°C. At 850 and 750°C, the A2 phase was replaced by the D8b phase. These experimental observations were used alongside literature data to assess the veracity of CALPHAD predictions made using the TCHEA4 thermodynamic database

    Microstructural evolution of a delta containing nickel-base superalloy during heat treatment and isothermal forging

    Get PDF
    The next generation of aerospace gas turbine engines need to operate at higher temperatures and stresses to improve their efficiency and reduce emissions. These operating conditions are beyond the capability of existing nickel-base superalloys, requiring the development of new high temperature materials. Controlling the microstructures of these new materials is key to obtaining the required properties and, therefore, it is critical to understand how these alloys respond to processing and heat treatment. Here, the microstructural evolution of V207M, a new δ containing, nickel-base superalloy, has been investigated following heat treatment and forging. The solvus temperatures of the γ′ and δ phases, determined by differential scanning calorimetry and microscopy, were found to be ~985 and ~1060 °C respectively. Isothermal forging of the alloy was conducted at 1000, 1050 and 1100 °C, corresponding to different volume fractions of retained δ. Considerable softening was observed prior to steady state flow when forging at 1000 °C, whilst only steady state flow occurred at 1050 and 1100 °C. The steady state flow process was believed to be dominated by dynamic recovery in the γ phase, with an activation energy of 407 kJmol−1. Samples that exhibited flow softening also showed a significant change in the orientation of the δ precipitates, preferentially aligning normal to the forging axis, and this reorientation was thought to be the cause of the observed flow softening

    On the Effect of Nb on the Microstructure and Properties of Next Generation Polycrystalline Powder Metallurgy Ni-Based Superalloys

    Get PDF
    Abstract The effect of Nb on the properties and microstructure of two novel powder metallurgy (P/M) Ni-based superalloys was evaluated, and the results critically compared with the Rolls-Royce alloy RR1000. The Nb-containing alloy was found to exhibit improved tensile and creep properties as well as superior oxidation resistance compared with both RR1000 and the Nb-free variant tested. The beneficial effect of Nb on the tensile and creep properties was due to the microstructures obtained following the post-solution heat treatments, which led to a higher γ′ volume fraction and a finer tertiary γ′ distribution. In addition, an increase in the anti-phase-boundary energy of the γ′ phase is also expected with the addition of Nb, further contributing to the strength of the material. However, these modifications in the γ′ distribution detrimentally affect the dwell fatigue crack-growth behavior of the material, although this behavior can be improved through modified heat treatments. The oxidation resistance of the Nb-containing alloy was also enhanced as Nb is believed to accelerate the formation of a defect-free Cr2O3 scale. Overall, both developmental alloys, with and without the addition of Nb, were found to exhibit superior properties than RR1000.This work was supported by the Rolls-Royce/EPSRC Strategic Partnership under EP/H022309/1, EP/H500375/1 and EP/ M005607/1

    Mechanical Properties and Microstructural Characterization of Aged Nickel-based Alloy 625 Weld Metal

    Get PDF
    The aim of this work was to evaluate the different phases formed during solidification and after thermal aging of the as-welded 625 nickel-based alloy, as well as the influence of microstructural changes on the mechanical properties. The experiments addressed aging temperatures of 650 and 950 A degrees C for 10, 100, and 200 hours. The samples were analyzed by electron microscopy, microanalysis, and X-ray diffraction in order to identify the secondary phases. Mechanical tests such as hardness, microhardness, and Charpy-V impact test were performed. Nondestructive ultrasonic inspection was also conducted to correlate the acquired signals with mechanical and microstructural properties. The results show that the alloy under study experienced microstructural changes when aged at 650 A degrees C. The aging was responsible by the dissolution of the Laves phase formed during the solidification and the appearance of gamma aEuro(3) phase within interdendritic region and fine carbides along the solidification grain boundaries. However, when it was aged at 950 A degrees C, the Laves phase was continuously dissolved and the excess Nb caused the precipitation of the delta-phase (Ni3Nb), which was intensified at 10 hours of aging, with subsequent dissolution for longer periods such as 200 hours. Even when subjected to significant microstructural changes, the mechanical properties, especially toughness, were not sensitive to the dissolution and/or precipitation of the secondary phases
    corecore