102 research outputs found

    FT-MPI: Fault Tolerant MPI, Supporting Dynamic Applications in a Dynamic World

    Full text link

    Hyaluronic acid injections in post-enucleation or evisceration socket syndrome: a case series

    Get PDF
    Background: One of the primary goals of enucleation and evisceration surgery is the restoration of an adequate orbital volume through the use of appropriately sized alloplastic or autogenous tissues. In patients inadequately treated, post-enucleation or evisceration socket syndrome occurs. Fillers are an ideal alternative for eyelid and eyebrow arcade volume enhancement since their injection is easily performed in an outpatient setting avoiding several complications. The aim of this study is to report the use of hyaluronic acid (HA) fillers to treat volume deficits of the upper and lower eyelids, projecting the brow arcade and reducing the asymmetry. Methods: Thirteen patients (2 male, 11 female, mean age 32.7 years) were treated from June 2012 to May 2020. Non-surgical treatment by HA filler injection for aesthetic rehabilitation of deep superior sulcus, inferior tear trough deformity, and scleral show was performed. Results: No complications as orbital-ache and/or vasovagal response were reported during the injections. Minor complications such as light swelling at the site of injection, self-resolved within 2 days, were recorded. Stable results were observed at follow-ups. In two cases, two successive treatments were required at 3 and 6 years from the first injection. Conclusions: Hyaluronic acid fillers offer a versatile and safe method for replacing soft tissue lost from the upper eyelid/brow complex in cases of post-enucleation or evisceration socket syndrome. Level of evidence: Level IV, therapeutic study

    Lenalidomide normalizes tumor vessels in colorectal cancer improving chemotherapy activity

    Get PDF
    BACKGROUND: Angiogenesis inhibition is a promising approach for treating metastatic colorectal cancer (mCRC). Recent evidences support the seemingly counterintuitive ability of certain antiangiogenic drugs to promote normalization of residual tumor vessels with important clinical implications. Lenalidomide is an oral drug with immune-modulatory and anti-angiogenic activity against selected hematologic malignancies but as yet little is known regarding its effectiveness for solid tumors. The aim of this study was to determine whether lenalidomide can normalize colorectal cancer neo-vessels in vivo, thus reducing tumor hypoxia and improving the benefit of chemotherapy. METHODS: We set up a tumorgraft model with NOD/SCID mice implanted with a patient-derived colorectal cancer liver metastasis. The mice were treated with oral lenalidomide (50 mg/Kg/day for 28 days), intraperitoneal 5-fluorouracil (5FU) (20 mg/Kg twice weekly for 3 weeks), combination (combo) of lenalidomide and 5FU or irrelevant vehicle. We assessed tumor vessel density (CD146), pericyte coverage (NG2; alphaSMA), in vivo perfusion capability of residual vessels (lectin distribution essay), hypoxic areas (HP2-100 Hypoxyprobe) and antitumor activity in vivo and in vitro. RESULTS: Treatment with lenalidomide reduced tumor vessel density (p = 0.0001) and enhanced mature pericyte coverage of residual vessels (p = 0.002). Perfusion capability of tumor vessels was enhanced in mice treated with lenalidomide compared to controls (p = 0.004). Accordingly, lenalidomide reduced hypoxic tumor areas (p = 0.002) and enhanced the antitumor activity of 5FU in vivo. The combo treatment delayed tumor growth (p = 0.01) and significantly reduced the Ki67 index (p = 0.0002). Lenalidomide alone did not demonstrate antitumor activity compared to untreated controls in vivo or against 4 different mCRC cell lines in vitro. CONCLUSIONS: We provide the first evidence of tumor vessel normalization and hypoxia reduction induced by lenalidomide in mCRC in vivo. This effect, seemingly counterintuitive for an antiangiogenic compound, translates into indirect antitumor activity thus enhancing the therapeutic index of chemotherapy. Our findings suggest that further research should be carried out on synergism between lenalidomide and conventional therapies for treating solid tumors that might benefit from tumor vasculature normalization

    Colorectal cancer residual disease at maximal response to EGFR blockade displays a druggable Paneth cell–like phenotype

    Get PDF
    Blockade of epidermal growth factor receptor (EGFR) causes tumor regression in some patients with metastatic colorectal cancer (mCRC). However, residual disease reservoirs typically remain even after maximal response to therapy, leading to relapse. Using patient-derived xenografts (PDXs), we observed that mCRC cells surviving EGFR inhibition exhibited gene expression patterns similar to those of a quiescent subpopulation of normal intestinal secretory precursors with Paneth cell characteristics. Compared with untreated tumors, these pseudodifferentiated tumor remnants had reduced expression of genes encoding EGFR-activating ligands, enhanced activity of human epidermal growth factor receptor 2 (HER2) and HER3, and persistent signaling along the phosphatidylinositol 3-kinase (PI3K) pathway. Clinically, properties of residual disease cells from the PDX models were detected in lingering tumors of responsive patients and in tumors of individuals who had experienced early recurrence. Mechanistically, residual tumor reprogramming after EGFR neutralization was mediated by inactivation of Yes-associated protein (YAP), a master regulator of intestinal epithelium recovery from injury. In preclinical trials, Pan-HER antibodies minimized residual disease, blunted PI3K signaling, and induced long-term tumor control after treatment discontinuation. We found that tolerance to EGFR inhibition is characterized by inactivation of an intrinsic lineage program that drives both regenerative signaling during intestinal repair and EGFR-dependent tumorigenesis. Thus, our results shed light on CRC lineage plasticity as an adaptive escape mechanism from EGFR-targeted therapy and suggest opportunities to preemptively target residual disease

    Epidermal Growth Factor Receptor (EGFR) mutation analysis, gene expression profiling and EGFR protein expression in primary prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activating mutations of the epidermal growth factor receptor (<it>EGFR</it>) confer sensitivity to the tyrosine kinase inhibitors (TKi), gefitinib and erlotinib. We analysed EGFR expression, EGFR mutation status and gene expression profiles of prostate cancer (PC) to supply a rationale for EGFR targeted therapies in this disease.</p> <p>Methods</p> <p>Mutational analysis of EGFR TK domain (exons from 18 to 21) and immunohistochemistry for EGFR were performed on tumour tissues derived from radical prostatectomy from 100 PC patients. Gene expression profiling using oligo-microarrays was also carried out in 51 of the PC samples.</p> <p>Results</p> <p>EGFR protein overexpression (EGFR<sub>high</sub>) was found in 36% of the tumour samples, and mutations were found in 13% of samples. Patients with EGFR<sub>high </sub>tumours experienced a significantly increased risk of biochemical relapse (hazard ratio-HR 2.52, p=0.02) compared with patients with tumours expressing low levels of EGFR (EGFR<sub>low</sub>). Microarray analysis did not reveal any differences in gene expression between EGFR<sub>high </sub>and EGFR<sub>low </sub>tumours. Conversely, in EGFR<sub>high </sub>tumours, we were able to identify a 79 gene signature distinguishing mutated from non-mutated tumours. Additionally, 29 genes were found to be differentially expressed between mutated/EGFR<sub>high </sub>(n=3) and mutated/EGFR<sub>low </sub>tumours (n=5). Four of the down-regulated genes, U19/EAF2, ABCC4, KLK3 and ANXA3 and one of the up-regulated genes, FOXC1, are involved in PC progression.</p> <p>Conclusions</p> <p>Based on our findings, we hypothesize that accurate definition of the EGFR status could improve prognostic stratification and we suggest a possible role for EGFR-directed therapies in PC patients. Having been generated in a relatively small sample of patients, our results warrant confirmation in larger series.</p

    Targeting EGFR/HER2 pathways enhances the antiproliferative effect of gemcitabine in biliary tract and gallbladder carcinomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advanced biliary tract carcinomas (BTCs) have poor prognosis and limited therapeutic options. Therefore, it is crucial to combine standard therapies with molecular targeting. In this study EGFR, HER2, and their molecular transducers were analysed in terms of mutations, amplifications and over-expression in a BTC case series. Furthermore, we tested the efficacy of drugs targeting these molecules, as single agents or in combination with gemcitabine, the standard therapeutic agent against BTC.</p> <p>Methods</p> <p>Immunohistochemistry, FISH and mutational analysis were performed on 49 BTC samples of intrahepatic (ICCs), extrahepatic (ECCs), and gallbladder (GBCs) origin. The effect on cell proliferation of different EGFR/HER2 pathway inhibitors as single agents or in combination with gemcitabine was investigated on BTC cell lines. Western blot analyses were performed to investigate molecular mechanisms of targeted drugs.</p> <p>Results</p> <p>EGFR is expressed in 100% of ICCs, 52.6% of ECCs, and in 38.5% of GBCs. P-MAPK and p-Akt are highly expressed in ICCs (>58% of samples), and to a lower extent in ECCs and GBCs (<46%), indicating EGFR pathway activation. HER2 is overexpressed in 10% of GBCs (with genomic amplification), and 26.3% of ECCs (half of which has genomic amplification). EGFR or its signal transducers are mutated in 26.5% of cases: 4 samples bear mutations of PI3K (8.2%), 3 cases (6.1%) in K-RAS, 4 (8.2%) in B-RAF, and 2 cases (4.1%) in PTEN, but no loss of PTEN expression is detected. EGI-1 cell line is highly sensitive to gemcitabine, TFK1 and TGBC1-TKB cell lines are responsive and HuH28 cell line is resistant. In EGI-1 cells, combination with gefitinib further increases the antiproliferative effect of gemcitabine. In TFK1 and TGBC1-TKB cells, the efficacy of gemcitabine is increased with addiction of sorafenib and everolimus. In TGBC1-TKB cells, lapatinib also has a synergic effect with gemcitabine. HuH28 becomes responsive if treated in combination with erlotinib. Moreover, HuH28 cells are sensitive to lapatinib as a single agent. Molecular mechanisms were confirmed by western blot analysis.</p> <p>Conclusion</p> <p>These data demonstrate that EGFR and HER2 pathways are suitable therapeutic targets for BTCs. The combination of gemcitabine with drugs targeting these pathways gives encouraging results and further clinical studies could be warranted.</p

    Strategies for preventing group B streptococcal infections in newborns: A nation-wide survey of Italian policies

    Get PDF

    Combined analgesics in (headache) pain therapy: shotgun approach or precise multi-target therapeutics?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pain in general and headache in particular are characterized by a change in activity in brain areas involved in pain processing. The therapeutic challenge is to identify drugs with molecular targets that restore the healthy state, resulting in meaningful pain relief or even freedom from pain. Different aspects of pain perception, i.e. sensory and affective components, also explain why there is not just one single target structure for therapeutic approaches to pain. A network of brain areas ("pain matrix") are involved in pain perception and pain control. This diversification of the pain system explains why a wide range of molecularly different substances can be used in the treatment of different pain states and why in recent years more and more studies have described a superior efficacy of a precise multi-target combination therapy compared to therapy with monotherapeutics.</p> <p>Discussion</p> <p>In this article, we discuss the available literature on the effects of several fixed-dose combinations in the treatment of headaches and discuss the evidence in support of the role of combination therapy in the pharmacotherapy of pain, particularly of headaches. The scientific rationale behind multi-target combinations is the therapeutic benefit that could not be achieved by the individual constituents and that the single substances of the combinations act together additively or even multiplicatively and cooperate to achieve a completeness of the desired therapeutic effect.</p> <p>As an example the fixesd-dose combination of acetylsalicylic acid (ASA), paracetamol (acetaminophen) and caffeine is reviewed in detail. The major advantage of using such a fixed combination is that the active ingredients act on different but distinct molecular targets and thus are able to act on more signalling cascades involved in pain than most single analgesics without adding more side effects to the therapy.</p> <p>Summary</p> <p>Multitarget therapeutics like combined analgesics broaden the array of therapeutic options, enable the completeness of the therapeutic effect, and allow doctors (and, in self-medication with OTC medications, the patients themselves) to customize treatment to the patient's specific needs. There is substantial clinical evidence that such a multi-component therapy is more effective than mono-component therapies.</p

    Ex vivo treatment of patient biopsies as a novel method to assess colorectal tumour response to the MEK1/2 inhibitor, Selumetinib

    Get PDF
    Abstract Although an array of new therapeutics has emerged for the treatment of colorectal cancer, their use is significantly impacted by variability in patient response. Better pre-clinical models could substantially improve efficacy as it may allow stratification of patients into the correct treatment regime. Here we explore acute, ex vivo treatment of fresh, surgically resected human colorectal tumour biopsies as a novel pre-clinical model for identifying patient response to specific therapeutics. The MEK1/2 inhibitor, Selumetinib (AZD6244, ARRY-142886) was used as a tool compound. Firstly, we established an acute treatment protocol and demonstrated this protocol could differentiate phenotypic and pharmacodynamic responses to Selumetinib (0–3uM). We then used the protocol to evaluate Selumetinib response in tumours from 23 colon cancer patients. These studies revealed that the agent inhibited pERK1/2 phosphorylation in all tumours, caused a significant decrease in proliferation in 5/23 (22%) tumours, and that KRAS/BRAF mutant tumours were particularly sensitive to the anti-proliferative effects of the agent. These data are consistent with data from clinical trials of Selumetinib, suggesting that acute treatment of small tumour biopsies is worthy of further exploration as a pre-clinical model to evaluate colorectal cancer response to novel therapies
    • …
    corecore